forked from Harinaathgobi/GCR-Workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamserial_1.py
138 lines (90 loc) · 3.99 KB
/
camserial_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import numpy as np
import math
import time
import serial
cap = cv2.VideoCapture(0)
ser = serial.Serial('COM4', 9600)
while(1):
try:
ret, frame = cap.read()
frame=cv2.flip(frame,1)
kernel = np.ones((3,3),np.uint8)
#define region of interest
roi=frame[50:350, 50:350]
cv2.rectangle(frame,(50,50),(350,350),(0,255,0),0)
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
# define range of skin color in HSV
lower_skin = np.array([0,30,70], dtype=np.uint8)
upper_skin = np.array([20,255,255], dtype=np.uint8)
mask = cv2.inRange(hsv, lower_skin, upper_skin)
mask = cv2.erode(mask,kernel,iterations = 2)
mask = cv2.dilate(mask,kernel,iterations = 4)
mask = cv2.GaussianBlur(mask,(5,5),100)
#find contours
_,contours,hierarchy= cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#find contour of max area(hand)
cnt = max(contours, key = lambda x: cv2.contourArea(x))
#approx the contour a little
epsilon = 0.0005*cv2.arcLength(cnt,True)
approx= cv2.approxPolyDP(cnt,epsilon,True)
#make convex hull around hand
hull = cv2.convexHull(cnt)
#find the defects in convex hull with respect to hand
hull = cv2.convexHull(approx, returnPoints=False)
defects = cv2.convexityDefects(approx, hull)
# l = no. of defects
l=0
#code for finding no. of defects due to fingers
for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(approx[s][0])
end = tuple(approx[e][0])
far = tuple(approx[f][0])
pt= (100,180)
# find length of all sides of triangle
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
s = (a+b+c)/2
ar = math.sqrt(s*(s-a)*(s-b)*(s-c))
# apply cosine rule here
angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57
# ignore angles > 90 and ignore points very close to convex hull(they generally come due to noise)
if angle <= 90:
l += 1
cv2.circle(roi, far, 3, [255,0,0], -1)
#draw lines around hand
cv2.line(roi,start, end, [0,255,0], 2)
l+=1
font = cv2.FONT_HERSHEY_SIMPLEX
if l==1:
cv2.putText(frame,'1',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
ser.write('1')
time.sleep(1)
elif l==2:
cv2.putText(frame,'2',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
ser.write('1')
elif l==3:
cv2.putText(frame,'3',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
#ser.write('1')
elif l==4:
cv2.putText(frame,'4',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
ser.write('5')
time.sleep(1)
elif l==5:
cv2.putText(frame,'5',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
#ser.write('5')
else :
cv2.putText(frame,'Out of range',(10,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
#ser.write('1')
#show the windows
cv2.imshow('mask',mask)
cv2.imshow('frame',frame)
except:
pass
k = cv2.waitKey(10) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
cap.release()