-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
85 lines (79 loc) · 2.8 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Prediction interface for Cog ⚙️
# Reference: https://github.com/replicate/cog/blob/main/docs/python.md
import os
import tempfile
import subprocess
from cog import BasePredictor, Path, Input
import torch
from scipy.io import wavfile
import numpy as np
import librosa
from synth import Synth
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.synth = Synth(torch.device("cuda"))
def predict(
self,
audio: Path = Input(description="Audio input file, max 5 seconds"),
minimize_num_freqs: bool = Input(
description="Minimize the number of active carrier and modulator frequencies",
default=False,
),
carrier_stereo_detune: float = Input(
description="Carrier frequency stereo detune", default=0.005
),
mod_stereo_detune: float = Input(
description="Modulator frequency stereo detune", default=0.01
),
time_stretch: float = Input(
description="Time stretch factor", ge=0.1, le=5, default=1
),
learning_rate: float = Input(description="ADAM learning rate", default=0.01),
n_iter: int = Input(
description="Number of optimization iterations",
ge=100,
le=5000,
default=1000,
),
seed: int = Input(description="Random seed, -1 for random", default=-1),
) -> Path:
"""Run a single prediction on the model"""
if seed < 0:
seed = int.from_bytes(os.urandom(2), "big")
torch.manual_seed(seed)
np.random.seed(seed)
print(f"Prediction seed: {seed}")
target, sr = librosa.load(str(audio))
out_sr = 44100
out = self.synth.fit(
target=target,
sr=sr,
minimize_num_freqs=minimize_num_freqs,
carrier_stereo_detune=carrier_stereo_detune,
mod_stereo_detune=mod_stereo_detune,
time_stretch=time_stretch,
learning_rate=learning_rate,
n_iter=n_iter,
out_sr=out_sr,
)
out_dir = Path(tempfile.mkdtemp())
wav_path = out_dir / "out.wav"
mp3_path = out_dir / "out.mp3"
wavfile.write(str(wav_path), out_sr, out)
try:
subprocess.check_output(
[
"ffmpeg",
"-loglevel",
"error",
"-i",
str(wav_path),
"-af",
"silenceremove=1:0:-50dB,aformat=dblp,areverse,silenceremove=1:0:-50dB,aformat=dblp,areverse", # strip silence
str(mp3_path),
],
)
return mp3_path
finally:
wav_path.unlink()