-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathapp.py
73 lines (58 loc) · 1.97 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import streamlit as st
st.set_page_config(layout="wide", page_title='LAS Explorer v.0.1')
from load_css import local_css
import lasio
import missingno as mno
import pandas as pd
# Local Imports
import home
import raw_data
import plotting
import header
import missingdata
from io import StringIO
local_css("style.css")
@st.cache
def load_data(uploaded_file):
if uploaded_file is not None:
try:
bytes_data = uploaded_file.read()
str_io = StringIO(bytes_data.decode('Windows-1252'))
las_file = lasio.read(str_io)
well_data = las_file.df()
well_data['DEPTH'] = well_data.index
except UnicodeDecodeError as e:
st.error(f"error loading log.las: {e}")
else:
las_file = None
well_data = None
return las_file, well_data
#TODO
def missing_data():
st.title('Missing Data')
missing_data = well_data.copy()
missing = px.area(well_data, x='DEPTH', y='DT')
st.plotly_chart(missing)
# Sidebar Options & File Uplaod
las_file=None
st.sidebar.write('# LAS Data Explorer')
st.sidebar.write('To begin using the app, load your LAS file using the file upload option below.')
uploadedfile = st.sidebar.file_uploader(' ', type=['.las'])
las_file, well_data = load_data(uploadedfile)
if las_file:
st.sidebar.success('File Uploaded Successfully')
st.sidebar.write(f'<b>Well Name</b>: {las_file.well.WELL.value}',unsafe_allow_html=True)
# Sidebar Navigation
st.sidebar.title('Navigation')
options = st.sidebar.radio('Select a page:',
['Home', 'Header Information', 'Data Information', 'Data Visualisation', 'Missing Data Visualisation'])
if options == 'Home':
home.home()
elif options == 'Header Information':
header.header(las_file)
elif options == 'Data Information':
raw_data.raw_data(las_file, well_data)
elif options == 'Data Visualisation':
plotting.plot(las_file, well_data)
elif options == 'Missing Data Visualisation':
missingdata.missing(las_file, well_data)