-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoc.tex
1230 lines (1131 loc) · 43.2 KB
/
doc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{cleveref}
\usepackage{epstopdf}
\usepackage{framed}
\usepackage{array}
\usepackage{comment}
\usepackage{animate}
\usepackage{hyperref}
\epstopdfDeclareGraphicsRule{.gif}{png}{.png}{convert gif:#1 png:\OutputFile}
\AppendGraphicsExtensions{.gif}
\setbeamersize{text margin left=5mm,text margin right=5mm}
\graphicspath{{figures/}}
\usenavigationsymbolstemplate{}
\title{Is Pascal's Triangle a Fractal ?}
\author{Ankith A Das}
\institute{The University of Sydney}
\date{\today}
\begin{document}
\frame{\titlepage}
% \begin{frame}
% \textit{Mathematics is the art of giving the \textcolor{red}{same name} to \textcolor{blue}{different things}}
% \\[5pt]
% \rightline{{\rm --- Henri Ponicar\'e}}
% \end{frame}
\section[Outline]{}
\setbeamercovered{transparent}
\section{Pascal's Triangle}
\begin{frame}
\frametitle{Pascal's Triangle}
\begin{equation*}
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\\
\begin{array}{cc}
1 & 1 \\
\end{array}
\\
\begin{array}{ccc}
1 & 2 & 1 \\
\end{array}
\\
\begin{array}{cccc}
1 & 3 & 3 & 1 \\
\end{array}
\\
\begin{array}{ccccc}
1 & 4 & 6 & 4 & 1 \\
\end{array}
\\
\begin{array}{cccccc}
1 & 5 & 10 & 10 & 5 & 1 \\
\end{array}
\\
\begin{array}{ccccccc}
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
\end{array}
\\
\begin{array}{cccccccc}
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \\
\end{array}
\end{array}
\end{equation*}
\begin{itemize}
% Add an image of pascal Triangle
\item
One of the earliest mentions was in a Chinese document at around 1303 AD
\item
Looks pretty innocent right?
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Pascal's Triangle}
%We will look at the patterns when we color Pascal's triangle \\
\begin{itemize}
\item It is observed by coloring
\begin{enumerate}
\item all odd numbers black
\item all even numbers white
\end{enumerate}
\end{itemize}
\begin{figure}
\centering
\includegraphics[scale=0.8]{Mod2,7.pdf}
\end{figure}
\let\thefootnote\relax\footnotetext{Modified code:https://tex.stackexchange.com/questions/198887/how-can-i-draw-pascals-triangle-with-some-its-properties}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.8]{PascalMod2.pdf}
\caption{A bigger picture}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Pascal's Triangle}
\begin{itemize}
\item So how can we formulate this pattern ? We can begin by looking at binomial coefficients
\begin{align*}
(1+x)^{0} &=\qquad 1 \\
(1+x)^{1} &=\quad 1+1 x \\
(1+x)^{2} &= 1+2 x+1 x^{2} \\
& \vdots \\
(1+x)^{n} &=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
\end{align*}
where coefficients are given by
\begin{equation*}
a_{k}= \binom{n}{k} =\frac{n !}{(n-k) ! k !}, \quad 0 \leq k \leq n
\end{equation*}
\end{itemize}
\end{frame}
% Add a picture of skewed pascal triangle, Look into adding numbers to the figure
\begin{frame}
\frametitle{Pascal's Triangle}
\begin{itemize}
\item Checking if a binomial coefficient is odd or even by computing $\frac{n!}{(n-k)!k!}$ is a bad idea
\begin{align*}
50! = &3041409320171337804361260816606476884437\\
&7641568960512000000000000
\end{align*}
\item Even if we use the recursive formula
\begin{equation*}
\binom{n+1}{k}= \binom{n}{k-1} + \binom{n}{k}
\end{equation*}
\begin{equation*}
\binom{40}{20} = 137846528820 > 2^{32}
\end{equation*}
which is a big number (computer has fixed precision)
\item Fortunately, we don't need to compute these large numbers
\end{itemize}
\end{frame}
\begin{frame}
\centering
\Large
The Macroscopic view
\end{frame}
% Slide on HOLD!!!
\begin{frame}
\frametitle{Pascal's Triangle}
\begin{itemize}
\item In order to color a row in the triangle, we only need to know the color of the previous row
%\item In the odd,even coloring case, our problem simplifies to
%Ex: Divisibility by 2 can be followed from addition rule
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{table}[H]
\begin{tabular}{|lll|}
\hline
$\binom{n+1}{k} = $ & $\binom{n}{k-1} + $& $\binom{n}{k}$\\
\hline
even & even & even \\
odd & odd & even \\
odd & even & odd \\
even & odd & odd \\
\hline
\end{tabular}
\end{table}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[scale=0.7]{Mod2,7.pdf}
\end{figure}
\end{column}
\end{columns}
\begin{figure}
\centering
\includegraphics[scale=0.3]{pascalRule.pdf}
\end{figure}
\item The idea of looking at neighbor cells to determine the state of a new cell is the core idea of cellular automata
%\item Can we extend this idea of divisibility to other numbers ?
%\item What global patterns do we get? How are they related to binomial coefficient? These are some of the questions that I will try to answer.
%\item What patterns do we get ? Global pattern? Why? ...IFS
\end{itemize}
\end{frame}
\section{Cellular Automata}
% \begin{frame}
% \frametitle{Cellular Automata}
% \begin{itemize}
% % \item Prefect feedback machines. They are mathematically finite state machines
% %\item Each cell has one out of $p$ states. \textit{p-state} automata
% \item Consists of a grid of cells, each one with a finite number of states, like 1 or 0.
% \item For each cell, a neighborhood is defined.
% %\item Can be 1-D, 2-D \dots
% \item To run cellular automata, we need 2 pieces of information
% \begin{enumerate}
% \item Initial state of cells
% %\item Rules to describe new cell state from the states of a group of cells from the previous layer
% \item Fixed set of rules (rule table) that determine the state of new cell depending upon the states of current and neighborhood cells.
% \end{enumerate}
% \item The rules should not depend on the position of the group of cells within the layer.
% % Under review
% % \begin{figure}
% % \includegraphics[scale = 0.5]{fig1.png}
% % \end{figure}
% \end{itemize}
% \end{frame}
%% Under Review
% \begin{frame}
% \frametitle{Cellular Automata}
% \begin{itemize}
% \item More kinds of rules
% \begin{figure}[H]
% \includegraphics[scale = 0.37]{fig2}
% \caption{(a) is a four rule configuration and (b) is a 8 rule configuration}
% \end{figure}
% \end{itemize}
% \end{frame}
\subsection{Elementary CA}
\begin{frame}
\frametitle{Cellular Automata}
\begin{itemize}
\item Consists of a grid of cells, each one with a finite number of states, like 1 or 0.
\begin{figure}
\centering
\includegraphics[scale=0.4]{grid.pdf}
\end{figure}
\item A set of rules to describe new cell state from the states of a group of cells from the previous layer
\item Next generation depends on itself,cell to the left and, cell to the right (Neighbors).
%\item All the rules can be numbered in a nice way using binary
\begin{figure}[H]
\includegraphics[scale=0.5]{rulerule30}
%\caption{Elementary rule 30 = $(00011110)_2$}
\end{figure}
\item Ex:
\begin{figure}
\centering
\includegraphics[scale=0.4]{IMG.png}
\end{figure}
%\item Total number of rules are $2^{2^3} = 256$
%\item Mathematica can do this for you very easily using CellularAutomaton[ ]
\end{itemize}
\end{frame}
\begin{frame}
\centering
\animategraphics[loop,width=\linewidth]{2}{figures/gif/frame-}{0}{29}
\let\thefootnote\relax\footnotetext{https://en.wikipedia.org/wiki/File:One-d-cellular-automaton-rule-110.gif}
\end{frame}
\begin{frame}
\frametitle{Cellular Automata}
So lets run some
\begin{figure}
\includegraphics[scale=0.3]{fig3.png}
\includegraphics[scale=0.5]{rule60.pdf}
\caption{13 Generations of a 1-D Cellular Automata}
\end{figure}
\end{frame}
\begin{frame}
\begin{itemize}
\item There $2\times2\times2=8$ binary states for each 3 cells.
\item So, there are a total of $2^8 = 256$ possible rule sets.
\item Each rule can be index with 8-bit binary
\begin{figure}
\centering
\includegraphics[scale=0.7]{rule60Num.pdf}
\caption{Rule $(00111100)_2 = 60$}
\end{figure}
\item For the following examples, the initial state is
\begin{figure}
\centering
\includegraphics[scale=0.6]{initial.pdf}
\end{figure}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Cellular Automata}
\begin{figure}
\centering
\includegraphics[scale=0.53]{fig4.pdf}
\caption{Rule 110, this might be special}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Cellular Automata}
\begin{figure}
\includegraphics[scale=0.5]{seir.pdf}
\includegraphics[scale=0.6]{rule60.pdf}
\caption{Rule 60. Sierpinski Triangle*}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[scale=0.5]{GlobalMod2.pdf}
\caption{Sierpinski Triangle}
\end{figure}
\end{frame}
% \begin{frame}
% \frametitle{Elementary Cellular Automata}
% \begin{figure}
% \includegraphics[scale=0.4]{sier2.pdf}
% \caption{Rule 90.}
% \end{figure}
% \end{frame}
\begin{frame}
\frametitle{Cellular Automata}
\begin{figure}
\includegraphics[scale=0.8]{rule30.pdf}
\caption{Rule 30}
\end{figure}
\begin{itemize}
\item Has been used as a random number generator in Mathematica
\item Sensitive to initial conditons
\end{itemize}
\end{frame}
\subsection{2D CA}
\begin{comment}
% \begin{frame}
% \centering \LARGE
% Let's take it up a notch and see what happens in 2-D...
% \end{frame}
% \begin{frame}
% \centering \Large
% Let's play the \textit{Game of Life......}
% \end{frame}
% \begin{frame}
% \frametitle{2D CA: Game of life...}
% \begin{itemize}
% % Maybe I can ger rid of this one
% %\item Was very popular through the work of John Horton Conway in 1970's
% %\item Was made popular through the work of John Horton Conway
% %\item 2-state CA
% \item The rules are...
% \begin{enumerate}
% \item Cell survives when exactly 2 or 3 of it's 8 neighbors are alive.
% \item If more than 3 neighbors are alive, the cell dies from over-crowdedness.
% \item If fewer than 2 neighbors are alive, the cell dies from loneliness.
% \item Dead cell comes back to life when surrounded by exactly 3 live neighbors.
% \end{enumerate}
% \item Makes some interesting patters and life like behavior
% \item \textbf{Note:} The position of the alive and dead cells w.r.t the center does not matter for this rule. Also known as Totalistic CA
% \end{itemize}
% \end{frame}
% \begin{frame}
% \frametitle{Cellular Automata}
% \begin{itemize}
% \item Another variant of Game of Life: One out of eight rule
% \begin{enumerate}
% \item Cell becomes alive if exactly one neighbor is alive.
% \item Otherwise unchanged.
% \end{enumerate}
% \item Has some nice self-similarity
% \end{itemize}
% \end{frame}
% \begin{frame}
% \frametitle{Cellular Automata}
% \begin{itemize}
% \item Game of life is just one out of the imaginable set of rules
% \item For 2-state 2D automata and a neighborhood of eight cells, there are $2^{2^9} \approx 10^{154}$ different sets of rules!!
% \item Let's look at another rule: Majority Rule
% \begin{enumerate}
% \item If 5 or more of the neighborhood of 9 cells (including itself) are alive, this cell lives or stays alive
% \item Otherwise dies or remains dead
% \end{enumerate}
% \item Here center cell adjusts to the majority
% \item This kind of rule is called Outer Totalistic
% \item Has some resemblance with percolation
% \end{itemize}
% \end{frame}
% \begin{frame}
% \frametitle{Cellular Automata with Different neighbors}
% \begin{itemize}
% \item Let's consider only 4 neighbors.
% \begin{figure}
% \centering
% \includegraphics[scale=0.5]{VonNeigh.png}
% \end{figure}
% \item C = Center, N = North, E = East, S = South, W = West
% \item Can number the cell states in binary $(\text{CSWNE})_2$. Ex:$(01100)_2$ means S, W cells are alive, rest are dead
% \item Total number of sets of rules are $2^{2^5} \approx 4 \cdot 10^9$
% \item Two interesting examples are shown
% \end{itemize}
% \end{frame}
% \begin{frame}
% \frametitle{Cellular Automata}
% \begin{table}[H]
% \begin{tabular}{l|l|l|l|l|l|l|l}
% CSWNE & C & CSWNE & C & CSWNE & C & CSWNE & C \\
% \hline
% 00000 & 0 & 01000 & 1 & 10000 & 1 & 11000 & 1 \\
% 00001 & 0 & 01001 & 1 & 10001 & 1 & 11001 & 1 \\
% 00010 & 0 & 01010 & 1 & 10010 & 1 & 11010 & 1 \\
% 00011 & 0 & 01011 & 1 & 10011 & 1 & 11011 & 1 \\
% 00100 & 1 & 01100 & 0 & 10100 & 1 & 11100 & 1 \\
% 00101 & 1 & 01101 & 0 & 10101 & 1 & 11101 & 1 \\
% 00110 & 1 & 01110 & 0 & 10110 & 1 & 11110 & 1 \\
% 00111 & 1 & 01111 & 0 & 10111 & 1 & 11111 & 1
% \end{tabular}
% \end{table}
% \begin{itemize}
% \item This behaves like a 1D CA
% \end{itemize}
% \end{frame}
% % Maybe the last point is obvious and need not be stated
% \begin{frame}
% \frametitle{Cellular Automata}
% \begin{itemize}
% \item Many interesting rules can be given by a simple formula
% \item Parity Rule:
% \begin{equation*}
% C_{new} = C_{old} + N_{old} + E_{old} + S_{old} + W_{old} \mod 2
% \end{equation*}
% %\item Again, this is a 2-state CA
% \end{itemize}
% \end{frame}
\end{comment}
\subsection{Cellular Automata and polynomials}
\begin{frame}
\frametitle{CA and Polynomials}
\begin{itemize}
\item Let's look at the powers of $r(x) = 1 + x$:
\begin{align*}
(r(x))^{0} &=1 \\
(r(x))^{1} &=1+x \\
(r(x))^{2} &=1+2 x+x^{2} \\
%(r(x))^{3} &=1+3 x+3 x^{2}+x^{3} \\
& \vdots \\
(r(x))^{n} &=a_{0}(n)+a_{1}(n) x+a_{2}(n) x^{2}+\cdots+a_{n}(n) x^{n}
\end{align*}
\item By the addition rule of binomial coefficients
\begin{equation*}
a_k(n) = a_{k-1}(n-1) + a_k(n-1)
\end{equation*}
\item This is a Cellular Automata kind of behavior
\end{itemize}
\end{frame}
% Maybe add a figure to give better explanation of last point
\begin{frame}
\frametitle{CA and polynomials}
%\frametitle{CA, Pascal's Triangle and Polynomial}
\begin{itemize}
%\item Looking at the divisibility properties of $a_k(n)$ with 2
\item To color the triangle, we could look at divisibility of $a_k(n)$ with respect to 2
\item Now, there are 2 possibilities
\begin{align*}
a_k(n) \equiv 0 \pmod 2 \qquad or&& a_k(n) \equiv 1 \pmod 2
\end{align*}
\item The recursive addition rules in mod 2 arithmetic simplifies to
\begin{table}
\centering
\begin{tabular}{|ccc|}
\hline
$\binom{n+1}{k} =$ & $\binom{n}{k-1}$& $+ \ \binom{n}{k} \ $\\
\hline
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
\hline
\end{tabular}
\end{table}
%\item Exactly same rule set used to color the Pascal Triangle
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item If we set 1 = Black, 0 = White
\begin{figure}
\centering
\includegraphics{addRule.pdf}
\end{figure}
\item If we add a right neighbor to the above rule such that it doesn't affect the output
\begin{figure}
\centering
\includegraphics[scale=0.7]{rule60Num.pdf}
\end{figure}
\item This is rule $00111100_2 = 60$ Cellular Automata
\end{itemize}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.4]{sierSmall}
% Add generation axis to this plot
\begin{itemize}
\item Thus, this figure shows the coefficients of the powers of $r(x) = 1+x \mod 2$
\end{itemize}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[scale=0.5]{seir.pdf}
\caption{A Bigger picture}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Generalizations}
\begin{itemize}
\item There are 2 ways to generalize,
\begin{enumerate}
\item A different integer modulus
\item A different polynomial
\end{enumerate}
\item Ex: Let $r(x) = 1+2x$
\begin{align*}
(r(x))^0 &= 1 \\
(r(x))^1 &= 1+2x \\
(r(x))^2 &= 1 + 4x + 4x^2\\
(r(x))^3 &= 1 + 6x + 12x^2 + 8x^3 \\
&\vdots \\
(r(x))^n &= a_0(n) + a_1(n)x + \dots + a_n(n)x^n
\end{align*}
\item By observation,
\begin{equation*}
a_k(n) = a_{k}(n-1) + 2a_{k-1}(n-1)
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item By looking at the remainder with p = 3,i.e $a_k(n)\mod3$
\begin{align*}
(r(x))^0 &= 1 \\
(r(x))^1 &= 1 \ 2 \\
(r(x))^2 &= 1 \ 1 \ 1 \\
(r(x))^3 &= 1 \ 0 \ 0 \ 2
\end{align*}
\item The cellular automaton would be $a_{n,k} = a_{n-1,k} + 2a_{n-1,k-1} \mod 3$
\begin{figure}
\centering
\includegraphics[scale=0.3]{Mod3Poly.pdf}
\includegraphics[scale=0.6]{genPolyRule.pdf}
\caption{CA for $r(x) = 1 + 2x \mod 3$ and rule table}
\end{figure}
\end{itemize}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.5]{genPolyRuleVertical.pdf}
\includegraphics[scale=0.6]{Mod3Bigger.pdf}
\caption{A bigger picture for rule $(02110221)_3 = 5421$}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Generalizations}
\begin{itemize}
\item Another quick example: $r(x) = 1 + x \mod 3$
\begin{figure}
\centering
\includegraphics[scale=0.5]{mod3ployrule.pdf}
\includegraphics[scale=0.5]{PascalCAMod3.pdf}
\end{figure}
\item The CA rule is $a_{n,k} = a_{n-1,k} + a_{n-1,k-1} \mod 3$
\end{itemize}
\end{frame}
% \begin{frame}
% \frametitle{Linear Cellular Automata}
% \begin{itemize}
% \item We can start with any polynomial $r(x) = a_0 + a_1x+\dots+a_dx^d$
% \item The coefficients of $(r(x))^n$ modulo some positive integer $p$ is obtained by an addition formula involving $d$ coefficients from $(r(x))^{n-1}$
% \item So, there is an associated Cellular Automata which generates coefficients modulo p of the powers of $(r(x))^n$
% \item A look-up table can be generated by an addition formula
% \item These are called \textit{Linear Cellular Automata}
% \item Again, the choice of p determines the number of states.
% This opens up a lot of interesting problems
% \end{itemize}
% \end{frame}
% % This slide needs improvement
% \begin{frame}
% \begin{itemize}
% \item Pattern Formation: Given a polynomial, what is the global pattern which evolves when the automaton has run for a long time?
% \item Colors: What is the relation between the global patterns which are obtained for different choices of p?
% \item Fractal Dimension: Fractal dimension of the global pattern ?
% \item Higher Dimension: What if we used polynomial of m variables ? (m-dimensional ?)
% \item Factorization: If a polynomial $r(x)$ can be factorized to two polynomials $s(x)$ and $t(x)$, how are the patters related ? Is that factorization unique ? \\
% In general, no, it depends on $p$\\
% Ex: $1+x$ is irreducible with respect to integers. But in arithmetic modulo $p$, with $p$ not prime, there are non trivial factorization
% \begin{equation*}
% 1+x \equiv (1+3x)(1+4x) \pmod 6
% \end{equation*}
% \end{itemize}
% \end{frame}
\begin{frame}
\centering
\Large
The Microscopic view
\end{frame}
\section{Binomial Coefficients and Divisibility}
% Under review, be more descriptive
\begin{frame}
\frametitle{Binomial Coefficients and Divisibility}
\begin{itemize}
%\item Discuss the question of whether a binomial coefficient is divisible by $p$ or not.
\item Black and white coloring of the Pascal triangle depending on divisibility with $n$ (mod $n$), where n is an integer
\item We will also that in order to understand the patterns formed by mod $n$, we should look at the patters formed by the prime factors of $n$
\item We will look at a direct, non-recursive computation of binomial divisibility by p (prime)
%\item This was solved in an elegant manner by Ernest Eduard Kummer.
\end{itemize}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[scale=0.36]{PascalMod3.pdf}
\caption{Pascal triangle Mod 3}
\end{figure}
\end{frame}
\begin{frame}
%\frametitle{Binomial Coefficients and Divisibility}
\begin{itemize}
\item We define a new coordinate system such that, at position $(n,k)$ the binomial coefficient is
\begin{equation*}
\binom{n+k}{k} = \frac{(n+k)!}{n!k!}
\end{equation*}
\begin{figure}
\centering
\includegraphics[scale=0.39]{newCoordinate.png}
\caption{A new coordinate system}
\end{figure}
\end{itemize}
\let\thefootnote\relax\footnotetext{Fig. from "Chaos and Fractals" Pg 394}
\end{frame}
\subsection{Divisibility Sets}
\begin{frame}
\frametitle{Divisibility Sets}
\begin{itemize}
\item We formally define our problem
\begin{equation*}
P(r) = \left\{ (n,k) \left| \binom{n+k}{k} \text{ is not divisible by }r \right. \right\}
\end{equation*}
\item Plotting the points in this set gives the same Pascal Triangle pattern
\begin{figure}
\centering
\includegraphics[scale = 0.5]{P(2)}
\caption{$P(2)$ or Mod 2}
\end{figure}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Divisibility Sets}
\begin{itemize}
\item Observe that if $p$ and $q$ are two different prime numbers and a given integer $r$ is \textbf{not} divisible by $p \cdot q$, then it is \textbf{not} divisible by either $p$ or $q$
\begin{equation*}
P(pq) = P(p) \cup P(q) \text{, if $p \neq q$, $p,q$ prime} \tag{$\dagger$}
\end{equation*}
\item Eq $(\dagger)$ is the negation of the statement: If $pq$ divides $r$, then $r$ is divisible by both $p$ and $q$.
\item Ex: $P(6) = P(2) \cup P(3)$ %This generalization can be extended to any integer
\end{itemize}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\begin{minipage}[c]{.45\textwidth}
\includegraphics[width=1\linewidth,clip]{mod6Initalmod2.pdf}
\centering
$P(2)$ or Mod 2
\end{minipage}
\hfill
\begin{minipage}[c]{.45\textwidth}
\includegraphics[width=1\linewidth,clip]{Mod6InitalMod3.pdf}
\centering
$P(3)$ Mod 3
\end{minipage}
% Add a few more figures, so as to give a more clear description of this union.
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[width=0.475\textwidth]{Mod6.pdf}
\hfill
\includegraphics[width=0.475\textwidth]{mod2,3.jpg}
\caption{Left shows Mod 6 ($P(6)$) pattern and right shows the union of mod 2 (Red) and mod 3 (Blue)}
% Add a few more figures, so as to give a more clear description of this union.
\end{figure}
\end{frame}
\begin{frame}
\begin{itemize}
\item For an integer $r = p_1^{n_1}\dots p_s^{n_s}$ where $p_1,\dots,p_s$ are primes
\begin{equation*}
P(r) = P(p_1^{n_1}) \cup ... \cup P(p_s^{n_s})
\end{equation*}
\item So to understand the pattern formed by $P(r)$, we just need to understand the pattern of $P(p^n)$
\item We can construct $P(p)$ in a non-recursive direct method using Kummer's result
\end{itemize}
\end{frame}
\subsection{Kummer's Result}
\begin{frame}
\frametitle{Kummer's Result and p-adic numbers}
\begin{itemize}
\item To understand Kummer's result, we need to consider numbers with base $p$, where $p$ is prime
\item Like the decimal system, p-adic expansion of an integer is given by
\begin{equation*}
n = a_0 + a_1p +\dots + a_m p^m
\end{equation*}
where $a_i \in \{0,1,\dots,p-1\}$
\item The p-adic representation would be
\begin{equation*}
n = (a_m a_{m-1} \dots a_0)_p
\end{equation*}
\item Ex: $15_{10} = (1111)_2 = (120)_3 = (30)_5 = (21)_7 = (14)_{11}$
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item We define carry function $c_p$
\begin{equation*}
c_p(n,k) = \text{number of carries in the p-adic addition of n and k}
\end{equation*}
\item Ex: For $n = 15$ and $k=8$
\begin{equation*}
k=(08)_{10}=(1000)_{2}=(022)_{3}=(13)_{5}=(11)_{7}=(08)_{11}
\end{equation*}
\item If we take the binary addition
\begin{tabular}{cccccc}
& $0^1$ & $1$ & $1$ & $1$ & $1$ \\
+ & $0$ & $1$ & $0$ & $0$ & $0$ \\
\hline
& $1$ & $0$ & $1$ & $1$ & $1$
\end{tabular}
\begin{equation*}
c_2(15,8) = 1
\end{equation*}
\item Similarly, we can do the same for $p=3,5,7\dots$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Kummer's result}
\begin{itemize}
\item Kummer's Statement is:
\begin{quote}
Let $r = c_p(n,k),$ then $\binom{n+k}{k}$ is divisible by $p^r$ but not $p^{r + 1}$
\end{quote}
\item So, prime factorization of $\binom{n+k}{k}$ contains exactly $c_p(n,k)$ factors of $p$
\item This result is pretty amazing, since it gives a direct method to check if a binomial coefficient is divisible by $p$ or not.
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item For $n=5$ and $k=4$, Kummer's result says
\begin{equation*}
n = (101)_2 = (12)_3 = (10)_5 = (5)_7
\end{equation*}
\begin{equation*}
k = (100)_2 = (11)_3 = (4)_5 = (4)_7
\end{equation*}
\item In Base 2 addition
\begin{tabular}{cccccc}
& $0^1$ & $1$ & $0$ & $1$ \\
+ & $0$ & $1$ & $0$ & $0$ \\
\hline
& $1$ & $0$ & $0$ & $1$
\end{tabular}
$\Rightarrow c_2(5,4) = 1$
\item In Base 3 addition
\begin{tabular}{cccccc}
& $0^1$ & $1^1$ & $2$\\
+ & $0$ & $1$ & $1$\\
\hline
& $1$ & $0$ & $0$
\end{tabular}
$\Rightarrow c_3(5,4) = 2$
\item Similar additions can be done for $p = 5,7,11\dots$
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item Kummer's result says:
\begin{equation*}
c_{p}(5,4)=\left\{\begin{array}{l}{1, \text { for } p=2,7} \\
{2, \text { for } p=3 } \\
{0 \text{ otherwise }}\end{array}\right.
\end{equation*}
\item This implies
\begin{equation*}
\binom{5+4}{4} = \binom{9}{4} = 2^1 \cdot 3^2 \cdot 7^1
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item Applying Kummer's result to Divisibility Set gives
\begin{equation*}
P(p) = \{(n,k) | \ c_p(n,k) = 0\}
\end{equation*}
\item That is, the number of carries $c_p(n,k)$ is only $0$ if and only if
\begin{equation*}
a_i + b_i < p, \quad i = 0,\dots,m
\end{equation*}
where $a_i$ and $b_i$ are the p-adic digits of n and k.
%\item This is called the \textit{mod-p} condition.
%\item For prime powers,
% Review this equation
%\begin{equation*}
% P(p^\tau) = \{(n,k)| \ c_p(n,k) < \tau \}
%\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[width=0.475\textwidth]{P(5)cp.pdf}
\hfill
\includegraphics[width=0.475\textwidth]{P(5)Bi.pdf}
\caption{$P(5)$ generated using carry function (left) vs binomial divisibility (right)}
% Make them the same size
% Put more figures also, define for P(2) P(3)...
\end{figure}
\end{frame}
\begin{frame}
\centering
\Large
The Big Picture
\end{frame}
\section{Iterated Function System}
\begin{frame}
\frametitle{Iterated Function System}
\begin{itemize}
\item A method of constructing fractals using a set of contraction mappings.
\item A contraction mapping is an affine linear transformation
\begin{equation*}
f(x, y)=\left[ \begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right] \left[ \begin{array}{l}{x} \\ {y}\end{array}\right]+\left[ \begin{array}{l}{e} \\ {f}\end{array}\right]
\end{equation*}
where
\begin{equation*}
\text{det}\left(\left[ \begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right]\right) < 1
\end{equation*}
\item Union of these contraction mappings gives the Hutchinson equation of the fractal
%\item If you put a probability factor to these contraction mappings, you get some pretty images.
\end{itemize}
\end{frame}
% Some pretty pictures and some details about them
\begin{frame}
\begin{itemize}
\item The Hutchinson operator for Sierpinski Triangle is:
\begin{equation*}
S = w_{00}(S) \cup w_{01}(S) \cup w_{10}(S)
\end{equation*}
where $w_{ij}$ are contraction mappings of a unit square
\begin{align*}
w_{00} &= (x/2,y/2)\\
w_{01} &= (x/2, y/2+1/2) \\
w_{10} &= (x/2 + 1/2, y/2) \\
w_{11} &= (x/2 + 1/2 + y/2 + 1/2)
\end{align*}
% \item So how do we know for sure that our Pascal Sierpinski triangle is the same as the Hutchinson operator Sierpinski Triangle?
% \item Let's construct Mod 2 Pascal triangle in a unit square
\item Let $Q$ be a unit square
\end{itemize}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.2]{w_00.pdf}
\includegraphics[scale=0.2]{w_01.pdf}
\includegraphics[scale=0.2]{w_10.pdf}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.5]{0.pdf}
\caption{Initial region, $Q = S^0$}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.5]{1.pdf}
\caption{$S^1 = S(Q)$}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.5]{2.pdf}
\caption{$S^2 = S(S(Q))$}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.5]{3.pdf}
\caption{$S^3 = S(S(S(Q)))$}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.5]{5.pdf}
\caption{$S^5$}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\centering
\includegraphics[scale=0.5]{GlobalMod2}
\caption{$S^\infty$}
\end{figure}
\end{frame}
\begin{frame}
\centering
So how do we know for sure that our Pascal Triangle pattern is the Sierpinski Triangle ?
\end{frame}
\begin{frame}
\begin{itemize}
\item Let's construct Mod 2 Pascal triangle in a unit square
\item Let $Q$ be the unit square
\begin{equation*}
Q = \{(x,y) | \ (x,y) \in [0,1] \times [0,1]\}
\end{equation*}
\item Expand $x$ and $y$ in base 2 \\
\begin{minipage}[c]{0.45\textwidth}
\begin{align*}
x &= \sum_{i=1}^\infty a_i 2^{-i}, \ a_i \in \{0,1\} \\
y &= \sum_{i=1}^\infty b_i 2^{-i}, \ b_i \in \{0,1\}
\end{align*}
\end{minipage}
\hfill
\begin{minipage}[c]{0.45\textwidth}
\begin{figure}
\centering
\includegraphics[scale=0.55]{PascalSq.pdf}
\end{figure}
\end{minipage}
\item From Kummer's result, we know that the coordinates of the points not divisible by 2 are those which have no carries in the binary addition of the coordinates