-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFull_Script_ver7_final.py
436 lines (324 loc) · 17.7 KB
/
Full_Script_ver7_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
Validation = False
reduce_size = False
num_first_level_models = 3 #@TODO
SEED = 0
import time
start_time = time.time()
import pandas as pd
import numpy as np
import gc
from tqdm import tqdm
pd.set_option('display.max_rows', 99)
pd.set_option('display.max_columns', 50)
import warnings
warnings.filterwarnings('ignore')
# Data path
data_path = './DataFile'
processed_data_dir = './ProcessedData'
submission_path = './Submission'
def downcast_dtypes(df):
float_cols = [c for c in df if df[c].dtype == "float64"]
int_cols = [c for c in df if df[c].dtype in ["int64", "int32"]]
df[float_cols] = df[float_cols].astype(np.float32)
df[int_cols] = df[int_cols].astype(np.int16)
return df
# 0. Load data ----------------------------------------------------------------
print('%0.2f min: Start loading data'%((time.time() - start_time)/60))
sale_train = pd.read_csv('%s/sales_train.csv' % data_path)
test = pd.read_csv('%s/test.csv' % data_path)
test_nrow = test.shape[0]
sale_train = sale_train.merge(test[['shop_id']], how = 'inner')
sale_train['date'] = pd.to_datetime(sale_train['date'], format = '%d.%m.%Y')
print('%0.2f min: Finish loading data'%((time.time() - start_time)/60))
# Correct sale_train values
sale_train['item_price'][2909818] = np.nan
sale_train['item_cnt_day'][2909818] = np.nan
sale_train['item_price'][2909818] = sale_train[(sale_train['shop_id'] ==12) & (sale_train['item_id'] == 11373) & (sale_train['date_block_num'] == 33)]['item_price'].median()
sale_train['item_cnt_day'][2909818] = round(sale_train[(sale_train['shop_id'] ==12) & (sale_train['item_id'] == 11373) & (sale_train['date_block_num'] == 33)]['item_cnt_day'].median())
sale_train['item_price'][885138] = np.nan
sale_train['item_price'][885138] = sale_train[(sale_train['item_id'] == 11365) & (sale_train['shop_id'] ==12) & (sale_train['date_block_num'] == 8)]['item_price'].median()
# 1. Aggregate data ----------------------------------------------------------------
from itertools import product
# For every month we create a grid from all shops/items combinations from that month
grid = []
for block_num in sale_train['date_block_num'].unique():
cur_shops = sale_train[sale_train['date_block_num']==block_num]['shop_id'].unique()
cur_items = sale_train[sale_train['date_block_num']==block_num]['item_id'].unique()
grid.append(np.array(list(product(*[cur_shops, cur_items, [block_num]])),dtype='int32'))
#turn the grid into pandas dataframe
index_cols = ['shop_id', 'item_id', 'date_block_num']
grid = pd.DataFrame(np.vstack(grid), columns = index_cols,dtype=np.int32)
print('%0.2f min: Finish creating the grid'%((time.time() - start_time)/60))
index_cols = ['shop_id', 'item_id', 'date_block_num']
sale_train['item_cnt_day'] = sale_train['item_cnt_day'].clip(0,20)
gb_cnt = sale_train.groupby(index_cols)['item_cnt_day'].agg(['sum']).reset_index().rename(columns = {'sum': 'item_cnt_month'})
gb_cnt['item_cnt_month'] = gb_cnt['item_cnt_month'].clip(0,20).astype(np.int)
#join aggregated data to the grid
train = pd.merge(grid,gb_cnt,how='left',on=index_cols).fillna(0)
train['item_cnt_month'] = train['item_cnt_month'].astype(int)
train = downcast_dtypes(train)
#sort the data
train.sort_values(['date_block_num','shop_id','item_id'],inplace=True)
print('%0.2f min: Finish joining gb_cnt'%((time.time() - start_time)/60))
item = pd.read_csv('%s/items.csv' % data_path)
train = train.merge(item[['item_id', 'item_category_id']], on = ['item_id'], how = 'left')
test = test.merge(item[['item_id', 'item_category_id']], on = ['item_id'], how = 'left')
print('%0.2f min: Finish adding item_category_id'%((time.time() - start_time)/60))
# 2. Add item/shop pair mean-encodings -----------------------------------------
# For Trainset
print('%0.2f min: Start adding mean-encoding for item_cnt_month'%((time.time() - start_time)/60))
Target = 'item_cnt_month'
global_mean = train[Target].mean()
y_tr = train[Target].values
mean_encoded_col = ['item_id']
for col in tqdm(mean_encoded_col):
col_tr = train[[col] + [Target]]
corrcoefs = pd.DataFrame(columns = ['Cor'])
# 3.1.1 Mean encodings - KFold scheme
from sklearn.model_selection import KFold
kf = KFold(n_splits = 5, shuffle = False, random_state = SEED)
col_tr[col + '_cnt_month_mean_Kfold'] = global_mean
for tr_ind, val_ind in kf.split(col_tr):
X_tr, X_val = col_tr.iloc[tr_ind], col_tr.iloc[val_ind]
means = X_val[col].map(X_tr.groupby(col)[Target].mean())
X_val[col + '_cnt_month_mean_Kfold'] = means
col_tr.iloc[val_ind] = X_val
# X_val.head()
col_tr.fillna(global_mean, inplace = True)
corrcoefs.loc[col + '_cnt_month_mean_Kfold'] = np.corrcoef(y_tr, col_tr[col + '_cnt_month_mean_Kfold'])[0][1]
# 3.1.2 Mean encodings - Leave-one-out scheme
item_id_target_sum = col_tr.groupby(col)[Target].sum()
item_id_target_count = col_tr.groupby(col)[Target].count()
col_tr[col + '_cnt_month_sum'] = col_tr[col].map(item_id_target_sum)
col_tr[col + '_cnt_month_count'] = col_tr[col].map(item_id_target_count)
col_tr[col + '_target_mean_LOO'] = (col_tr[col + '_cnt_month_sum'] - col_tr[Target]) / (col_tr[col + '_cnt_month_count'] - 1)
col_tr.fillna(global_mean, inplace = True)
corrcoefs.loc[col + '_target_mean_LOO'] = np.corrcoef(y_tr, col_tr[col + '_target_mean_LOO'])[0][1]
# 3.1.3 Mean encodings - Smoothing
item_id_target_mean = col_tr.groupby(col)[Target].mean()
item_id_target_count = col_tr.groupby(col)[Target].count()
col_tr[col + '_cnt_month_mean'] = col_tr[col].map(item_id_target_mean)
col_tr[col + '_cnt_month_count'] = col_tr[col].map(item_id_target_count)
alpha = 100
col_tr[col + '_cnt_month_mean_Smooth'] = (col_tr[col + '_cnt_month_mean'] * col_tr[col + '_cnt_month_count'] + global_mean * alpha) / (alpha + col_tr[col + '_cnt_month_count'])
col_tr[col + '_cnt_month_mean_Smooth'].fillna(global_mean, inplace=True)
corrcoefs.loc[col + '_cnt_month_mean_Smooth'] = np.corrcoef(y_tr, col_tr[col + '_cnt_month_mean_Smooth'])[0][1]
# 3.1.4 Mean encodings - Expanding mean scheme
cumsum = col_tr.groupby(col)[Target].cumsum() - col_tr[Target]
sumcnt = col_tr.groupby(col).cumcount()
col_tr[col + '_cnt_month_mean_Expanding'] = cumsum / sumcnt
col_tr[col + '_cnt_month_mean_Expanding'].fillna(global_mean, inplace=True)
corrcoefs.loc[col + '_cnt_month_mean_Expanding'] = np.corrcoef(y_tr, col_tr[col + '_cnt_month_mean_Expanding'])[0][1]
train = pd.concat([train, col_tr[corrcoefs['Cor'].idxmax()]], axis = 1)
print(corrcoefs.sort_values('Cor'))
print('%0.2f min: Finish encoding %s'%((time.time() - start_time)/60, col))
print('%0.2f min: Finish adding mean-encoding'%((time.time() - start_time)/60))
# 2. Feature Engineering -----------------------------------------
# 2.1 Combine trainset and testset -----------------------------------------
print('%0.2f min: Start combining data'%((time.time() - start_time)/60))
if Validation == False:
test['date_block_num'] = 34
all_data = pd.concat([train, test], axis = 0)
all_data = all_data.drop(columns = ['ID'])
else:
all_data = train
del train, test, col_tr
gc.collect()
all_data = downcast_dtypes(all_data)
# 2.2 Creating item/shop pair lags lag-based features ----------------------------
print('%0.2f min: Start adding lag-based feature'%((time.time() - start_time)/60))
index_cols = ['shop_id', 'item_id', 'item_category_id', 'date_block_num']
cols_to_rename = list(all_data.columns.difference(index_cols))
print(cols_to_rename)
shift_range = [1, 2, 3, 12]
for month_shift in tqdm(shift_range):
train_shift = all_data[index_cols + cols_to_rename].copy()
train_shift['date_block_num'] = train_shift['date_block_num'] + month_shift
foo = lambda x: '{}_lag_{}'.format(x, month_shift) if x in cols_to_rename else x
train_shift = train_shift.rename(columns=foo)
all_data = pd.merge(all_data, train_shift, on=index_cols, how='left').fillna(0)
del train_shift
gc.collect()
all_data = all_data[all_data['date_block_num'] >= 12] # Don't use old data from year 2013
lag_cols = [col for col in all_data.columns if col[-1] in [str(item) for item in shift_range]]
all_data = downcast_dtypes(all_data)
print('%0.2f min: Finish generating lag features'%((time.time() - start_time)/60))
# 2.3 Creating date features --------------------------------------------------------
print('%0.2f min: Start getting date features'%((time.time() - start_time)/60))
dates_train = sale_train[['date', 'date_block_num']].drop_duplicates()
dates_test = dates_train[dates_train['date_block_num'] == 34-12]
dates_test['date_block_num'] = 34
dates_test['date'] = dates_test['date'] + pd.DateOffset(years=1)
dates_all = pd.concat([dates_train, dates_test])
dates_all['year'] = dates_all['date'].dt.year
dates_all['month'] = dates_all['date'].dt.month
dates_all['day'] = dates_all['date'].dt.day
date_features = dates_all.groupby(['year','month','date_block_num'])['day'].max().reset_index().rename(columns = {'day': 'days_of_month'})
date_features['year'] = date_features['year'] - 2013
date_features.head()
all_data = all_data.merge(date_features, on = 'date_block_num', how = 'left')
date_columns = date_features.columns
print('%0.2f min: Finish getting date features'%((time.time() - start_time)/60))
# 2.4 Scale feature columns --------------------------------------------------------
from sklearn.preprocessing import StandardScaler
train = all_data[:-test_nrow]
test = all_data[-test_nrow:]
test_nrow = test.shape[0]
sc = StandardScaler()
to_drop_cols = ['date_block_num']
feature_columns = list(set(lag_cols + index_cols + list(date_columns)).difference(to_drop_cols))
train[feature_columns] = sc.fit_transform(train[feature_columns])
test[feature_columns] = sc.transform(test[feature_columns])
all_data = pd.concat([train, test], axis = 0)
all_data = downcast_dtypes(all_data)
del train, test, date_features, sale_train
gc.collect()
print('%0.2f min: Finish scaling features'%((time.time() - start_time)/60))
# 3. First-level model ------------------------------------------------------------------
# Save `date_block_num`, as we can't use them as features, but will need them to split the dataset into parts
dates = all_data['date_block_num']
last_block = dates.max()
print('Test `date_block_num` is %d' % last_block)
print(feature_columns)
print('%0.2f min: Start training First level models'%((time.time() - start_time)/60))
start_first_level_total = time.perf_counter()
scoringMethod = 'r2'; from sklearn.metrics import mean_squared_error; from math import sqrt
# Train meta-features M = 15 (12 + 15 = 27)
months_to_generate_meta_features = range(27,last_block +1)
mask = dates.isin(months_to_generate_meta_features)
Target = 'item_cnt_month'
y_all_level2 = all_data[Target][mask].values
X_all_level2 = np.zeros([y_all_level2.shape[0], num_first_level_models])
# Now fill `X_train_level2` with metafeatures
slice_start = 0
for cur_block_num in tqdm(months_to_generate_meta_features):
print('-' * 50)
print('Start training for month%d'% cur_block_num)
start_cur_month = time.perf_counter()
cur_X_train = all_data.loc[dates < cur_block_num][feature_columns]
cur_X_test = all_data.loc[dates == cur_block_num][feature_columns]
cur_y_train = all_data.loc[dates < cur_block_num, Target].values
cur_y_test = all_data.loc[dates == cur_block_num, Target].values
# Create Numpy arrays of train, test and target dataframes to feed into models
train_x = cur_X_train.values
train_y = cur_y_train.ravel()
test_x = cur_X_test.values
test_y = cur_y_test.ravel()
preds = []
from sklearn.linear_model import (LinearRegression, SGDRegressor)
import lightgbm as lgb
sgdr= SGDRegressor(
penalty = 'l2' ,
random_state = SEED )
lgb_params = {
'feature_fraction': 0.75,
'metric': 'rmse',
'nthread':1,
'min_data_in_leaf': 2**7,
'bagging_fraction': 0.75,
'learning_rate': 0.03,
'objective': 'mse',
'bagging_seed': 2**7,
'num_leaves': 2**7,
'bagging_freq':1,
'verbose':0
}
estimators = [sgdr]
for estimator in estimators:
print('Training Model %d: %s'%(len(preds), estimator.__class__.__name__))
start = time.perf_counter()
estimator.fit(train_x, train_y)
pred_test = estimator.predict(test_x)
preds.append(pred_test)
# pred_train = estimator.predict(train_x)
# print('Train RMSE for %s is %f' % (estimator.__class__.__name__, sqrt(mean_squared_error(cur_y_train, pred_train))))
# print('Test RMSE for %s is %f' % (estimator.__class__.__name__, sqrt(mean_squared_error(cur_y_test, pred_test))))
run = time.perf_counter() - start
print('{} runs for {:.2f} seconds.'.format(estimator.__class__.__name__, run))
print()
print('Training Model %d: %s'%(len(preds), 'lightgbm'))
start = time.perf_counter()
estimator = lgb.train(lgb_params, lgb.Dataset(train_x, label=train_y), 300)
pred_test = estimator.predict(test_x)
preds.append(pred_test)
# pred_train = estimator.predict(train_x)
# print('Train RMSE for %s is %f' % ('lightgbm', sqrt(mean_squared_error(cur_y_train, pred_train))))
# print('Test RMSE for %s is %f' % ('lightgbm', sqrt(mean_squared_error(cur_y_test, pred_test))))
run = time.perf_counter() - start
print('{} runs for {:.2f} seconds.'.format('lightgbm', run))
print()
print('Training Model %d: %s'%(len(preds), 'keras'))
start = time.perf_counter()
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
def baseline_model():
# create model
model = Sequential()
model.add(Dense(20, input_dim=train_x.shape[1], kernel_initializer='uniform', activation='softplus'))
model.add(Dense(1, kernel_initializer='uniform', activation = 'relu'))
# Compile model
model.compile(loss='mse', optimizer='Nadam', metrics=['mse'])
# model.compile(loss='mean_squared_error', optimizer='adam')
return model
estimator = KerasRegressor(build_fn=baseline_model, verbose=1, epochs=5, batch_size = 55000)
estimator.fit(train_x, train_y)
pred_test = estimator.predict(test_x)
preds.append(pred_test)
run = time.perf_counter() - start
print('{} runs for {:.2f} seconds.'.format('lightgbm', run))
cur_month_run_total = time.perf_counter() - start_cur_month
print('Total running time was {:.2f} minutes.'.format(cur_month_run_total/60))
print('-' * 50)
slice_end = slice_start + cur_X_test.shape[0]
X_all_level2[ slice_start : slice_end , :] = np.c_[preds].transpose()
slice_start = slice_end
np.save(submission_path + '/ver7_X_all_level2_.npy', X_all_level2)
# Split train and test
ver3_X_all_level2 = np.load(submission_path + '/ver3_X_all_level2.npy')
X_all_level2 = np.concatenate([ver3_X_all_level2, X_all_level2], axis = 1)
# Split train and test
X_train_level2 = X_all_level2[ : -test_nrow, :]
X_test_level2 = X_all_level2[ -test_nrow: , :]
y_train_level2 = y_all_level2[ : -test_nrow]
y_test_level2 = y_all_level2[ -test_nrow : ]
print('%0.2f min: Finish training First level models'%((time.perf_counter() - start_first_level_total)/60))
# 4. Ensembling -------------------------------------------------------------------
pred_list = {}
# A. Second level learning model via linear regression
print('Training Second level learning model via linear regression')
from sklearn.linear_model import (LinearRegression, SGDRegressor)
lr = LinearRegression()
lr.fit(X_train_level2, y_train_level2)
# Compute R-squared on the train and test sets.
# print('Train R-squared for %s is %f' %('test_preds_lr_stacking', sqrt(mean_squared_error(y_train_level2, lr.predict(X_train_level2)))))
test_preds_lr_stacking = lr.predict(X_test_level2)
train_preds_lr_stacking = lr.predict(X_train_level2)
print('Train R-squared for %s is %f' %('train_preds_lr_stacking', sqrt(mean_squared_error(y_train_level2, train_preds_lr_stacking))))
pred_list['test_preds_lr_stacking'] = test_preds_lr_stacking
if Validation:
print('Test R-squared for %s is %f' %('test_preds_lr_stacking', sqrt(mean_squared_error(y_test_level2, test_preds_lr_stacking))))
# B. Second level learning model via SGDRegressor
print('Training Second level learning model via SGDRegressor')
sgdr= SGDRegressor(
penalty = 'l2' ,
random_state = SEED )
sgdr.fit(X_train_level2, y_train_level2)
# Compute R-squared on the train and test sets.
# print('Train R-squared for %s is %f' %('test_preds_lr_stacking', sqrt(mean_squared_error(y_train_level2, lr.predict(X_train_level2)))))
test_preds_sgdr_stacking = sgdr.predict(X_test_level2)
train_preds_sgdr_stacking = sgdr.predict(X_train_level2)
print('Train R-squared for %s is %f' %('train_preds_lr_stacking', sqrt(mean_squared_error(y_train_level2, train_preds_sgdr_stacking))))
pred_list['test_preds_sgdr_stacking'] = test_preds_sgdr_stacking
if Validation:
print('Test R-squared for %s is %f' %('test_preds_sgdr_stacking', sqrt(mean_squared_error(y_test_level2, test_preds_sgdr_stacking))))
print('%0.2f min: Finish training second level model'%((time.time() - start_time)/60))
# Submission -------------------------------------------------------------------
if not Validation:
submission = pd.read_csv('%s/sample_submission.csv' % data_path)
ver = 7
for pred_ver in ['lr_stacking', 'sgdr_stacking']:
print(pred_list['test_preds_' + pred_ver].clip(0,20).mean())
submission['item_cnt_month'] = pred_list['test_preds_' + pred_ver].clip(0,20)
submission[['ID', 'item_cnt_month']].to_csv('%s/ver%d_%s.csv' % (submission_path, ver, pred_ver), index = False)
print('%0.2f min: Finish running scripts'%((time.time() - start_time)/60))