-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNCORR_RESECT90_July.R
753 lines (570 loc) · 28.1 KB
/
NCORR_RESECT90_July.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
library(here)
library(readxl)
library(dplyr)
library(ggplot2)
library(pROC)
library(furniture)
library(tidyverse)
library(mice)
library(haven)
library(mice)
library(purrr)
library(predtools)
library(tidyverse)
library(magrittr)
library(dplyr)
library(ggplot2)
library(data.table)
library(RColorBrewer)
library(ggh4x)
set.seed(123)
#iter <- 100
#all_results <- data.frame()
#for (i in 1:iter) {
# Read SPSS data
thoracic_raw <- read_sav("6600_anonymous.sav")
colnames(thoracic_raw)
# Set BMI values less than 14 and over 64 to missing
thoracic_raw$BMI[thoracic_raw$BMI < 14 | thoracic_raw$BMI > 64] <- NA
# Set CreatinineumolL values less than 11.30 and over 654 to missing
thoracic_raw$CreatinineumolL[thoracic_raw$CreatinineumolL < 11.3 | thoracic_raw$CreatinineumolL > 654] <- NA
# Set DLCOP values less than 18 and over 187 to missing
thoracic_raw$DLCOPredicted[thoracic_raw$DLCOPredicted < 18 | thoracic_raw$DLCOPredicted > 187] <- NA
# Replace the blanks in ECOG with NA (NOTE: the blank is a character "") check levels again
thoracic_raw$ECOG <- as.factor(ifelse(thoracic_raw$ECOG == "", NA, as.character(thoracic_raw$ECOG)))
# Replace the blanks in ASA with NA (NOTE: the blank is a character "") check levels again
thoracic_raw$ASA <- as.factor(ifelse(thoracic_raw$ASA == "", NA, as.character(thoracic_raw$ASA)))
# Replace the blanks in Dyspnoea with NA (NOTE: the blank is a character "") check levels again
thoracic_raw$Dyspnoea <- as.factor(ifelse(thoracic_raw$Dyspnoea == "", NA, as.character(thoracic_raw$Dyspnoea)))
# Make sure the variables are assigned properly - i.e. continuous or categorical - ??
# Recode the levels to 0 for "Elective" and 1 for "Urgent"
thoracic_raw$Urgency <- ifelse(thoracic_raw$Urgency == "Elective", 0, 1)
########################################################################################################################
# Select only relevant variables to be included in the dataset
resect_vars <- c("Age", #
"MaleSex", #
"ECOG", #
"DLCOPredicted",
"BMI",
"CreatinineumolL",
"Anaemia",
"Arrhythmia",
"Right",
"ResectedSegments",
"Thoracotomy",
"Malignant",
"Deadat90days") #
thoracoscore_vars <- c("Age55to65",
"AgeOver65",
"MaleSex", #
"ASA",
"ECOG3orAbove", #performance score
"NYHA3or4", #NYHA score
"Urgency",
"Pneumonectomy",
"Malignant",
"ComorbidityScore1and2",
"ComorbidityScore3andAbove",
"DeadatDischarge") #is this the equivalent to "in hospital mortality"?
df <- select(thoracic_raw, resect_vars, thoracoscore_vars) %>%
mutate(ID = 1:nrow(.))
col_names <- colnames(df) #assign col_names
id_col_index <- which(col_names == "ID"); #identify the indexes of the ID column
df <- df[, c(id_col_index, setdiff(seq_along(col_names), id_col_index))]
df$ID <- sample(df$ID)
df_val <- df %>%
filter(ID %in% sample(ID, nrow(df) / 2))
#####
df_val_resect <- df_val %>%
select(-ASA, -NYHA3or4, -Pneumonectomy, -ComorbidityScore1and2, -ComorbidityScore3andAbove, -Urgency, -DeadatDischarge)
df_val_thoracoscore <- df_val %>%
select(-DLCOPredicted, -BMI, -CreatinineumolL, -Anaemia, -Arrhythmia, -Right, -ResectedSegments, -Thoracotomy, -Deadat90days)
df_imp <- df %>%
filter(!(ID %in% df_val$ID))
df_imp_resect <- df_imp %>%
select(-ASA, -NYHA3or4, -Pneumonectomy, -ComorbidityScore1and2, -ComorbidityScore3andAbove, -Urgency, -DeadatDischarge)
df_imp_thoracoscore <- df_imp %>%
select(-DLCOPredicted, -BMI, -CreatinineumolL, -Anaemia, -Arrhythmia, -Right, -ResectedSegments, -Thoracotomy, -Deadat90days)
rm(df_imp)
rm(df_val)
##############################################################################################################################
#### CCA
CCA_function <- function(df) {
df[complete.cases(df), ]
}
### MEAN ZERO IMP
mean_zero_imputation <- function(df) {
for (col in names(df)) {
if (is.numeric(df[[col]])) {
df[[col]][is.na(df[[col]])] <- mean(df[[col]], na.rm = TRUE)
} else if (is.factor(df[[col]]) || is.character(df[[col]])) {
levels <- levels(df[[col]])
lowest_level <- min(levels, na.rm = TRUE)
df[[col]][is.na(df[[col]])] <- lowest_level
}
}
return(df)
}
### MICE
mice_function <- function(df, m = m, outcome_var, include_outcome) {
print(is.data.frame(df))
dummy_run <- mice(df, m = m, maxit = 0)
predmat <- dummy_run$predictorMatrix
if (include_outcome == FALSE) {
predmat[outcome_var, ] <- 0
predmat[, outcome_var] <- 0
}
predmat[,"ID"] <- 0
predmat["ID",] <- 0
print(predmat)
print(dummy_run$method)
method <- mice(df, method = dummy_run$method, predictorMatrix = predmat, m = m, print = FALSE)
return(method)
}
### 'MASTER' IMPUTATION FUNCTION
imputation_function <- function(df = df, m = m) {
MI_noY_val_resect <- mice_function(df = df_val_resect, m = m, include_outcome = FALSE, outcome_var = "Deadat90days")
MI_withY_val_resect <- mice_function(df = df_val_resect, m = m, include_outcome = TRUE, outcome_var = "Deadat90days")
MI_noY_imp_resect <- mice_function(df = df_imp_resect, m = m, include_outcome = FALSE, outcome_var = "Deadat90days")
MI_withY_imp_resect <- mice_function(df = df_imp_resect, m = m, include_outcome = TRUE, outcome_var = "Deadat90days")
MI_noY_val_thoracoscore <- mice_function(df = df_val_thoracoscore, m = m, include_outcome = FALSE, outcome_var = "DeadatDischarge")
MI_withY_val_thoracoscore <- mice_function(df = df_val_thoracoscore, m = m, include_outcome = TRUE, outcome_var = "DeadatDischarge")
MI_noY_imp_thoracoscore <- mice_function(df = df_imp_thoracoscore, m = m, include_outcome = FALSE, outcome_var = "DeadatDischarge")
MI_withY_imp_thoracoscore <- mice_function(df = df_imp_thoracoscore, m = m, include_outcome = TRUE, outcome_var = "DeadatDischarge")
CCA_val_resect <- CCA_function(df = df_val_resect)
#CCA_imp_resect <- CCA_function(df = df_imp_resect)
CCA_val_thoracoscore <- CCA_function(df = df_val_thoracoscore)
#CCA_imp_thoracoscore <- CCA_function(df = df_imp_thoracoscore)
mean_zero_val_resect <- mean_zero_imputation(df = df_val_resect)
mean_zero_imp_resect <- mean_zero_imputation(df = df_imp_resect)
mean_zero_val_thoracoscore <- mean_zero_imputation(df = df_val_thoracoscore)
mean_zero_imp_thoracoscore <- mean_zero_imputation(df = df_imp_thoracoscore)
return(list(
"MI_noY_val_resect" = MI_noY_val_resect,
"MI_withY_val_resect" = MI_withY_val_resect,
"MI_noY_imp_resect" = MI_noY_imp_resect,
"MI_withY_imp_resect" = MI_withY_imp_resect,
"MI_noY_val_thoracoscore" = MI_noY_val_thoracoscore,
"MI_withY_val_thoracoscore" = MI_withY_val_thoracoscore,
"MI_noY_imp_thoracoscore" = MI_noY_imp_thoracoscore,
"MI_withY_imp_thoracoscore" = MI_withY_imp_thoracoscore,
"CCA_val_resect" = CCA_val_resect,
#"CCA_imp_resect" = CCA_imp_resect,
"CCA_val_thoracoscore" = CCA_val_thoracoscore,
#"CCA_imp_thoracoscore" = CCA_imp_thoracoscore,
"mean_zero_val_resect" = mean_zero_val_resect,
"mean_zero_imp_resect" = mean_zero_imp_resect,
"mean_zero_val_thoracoscore" = mean_zero_val_thoracoscore,
"mean_zero_imp_thoracoscore" = mean_zero_imp_thoracoscore
))
}
imputed_datasets <- imputation_function(df, m = 5)
rm(df_val_resect)
rm(df_imp_resect)
rm(df_val_thoracoscore)
rm(df_imp_thoracoscore)
#imputed_datasets <- imputed_datasets %>%
#map_if(grepl("MI", names(.)), mice::complete, action = "long")
########################################################################################################################
################################ External validation of Resect and Thoracoscore ########################################
################################ Calculate LP and Pi ########################################
R_datasets <- imputed_datasets[grepl("resect", names(imputed_datasets))]
T_datasets <- imputed_datasets[grepl("thoracoscore", names(imputed_datasets))]
for (dataset_name in names(R_datasets)) {
datasetR <- R_datasets[[dataset_name]]
if (is.mids(datasetR)) {
mice::complete(datasetR, action = "long") #extracts imputed datasets from mids (breakpoint - it is making all MI datasets identical!!)
# Calculate LP for each observation
LP <- -6.036 +
(as.numeric(datasetR$Age) * 0.041) +
(as.numeric(datasetR$MaleSex) * 0.493) +
(as.numeric(datasetR$ECOG) * 0.183) -
(as.numeric(datasetR$DLCOPredicted) * 0.029) -
(as.numeric(datasetR$BMI) * 0.056) +
(as.numeric(datasetR$CreatinineumolL) * 0.005) +
(as.numeric(datasetR$Anaemia) * 0.242) +
(as.numeric(datasetR$Arrhythmia) * 0.608) +
(as.numeric(datasetR$Right) * 0.379) +
(as.numeric(datasetR$ResectedSegments) * 0.179) +
(as.numeric(datasetR$Thoracotomy) * 0.634) +
(as.numeric(datasetR$Malignant) * 0.769)
#LP_mean <- datasetR %>%
#group_by(ID) %>%
#summarise(LP_mean = mean(LP))
Pi <- exp(LP) / (1 + exp(LP))
datasetR$LP <- LP
datasetR$Pi <- Pi
} else {
LP <- -6.036 +
(as.numeric(datasetR$Age) * 0.041) +
(as.numeric(datasetR$MaleSex) * 0.493) +
(as.numeric(datasetR$ECOG) * 0.183) -
(as.numeric(datasetR$DLCOPredicted) * 0.029) -
(as.numeric(datasetR$BMI) * 0.056) +
(as.numeric(datasetR$CreatinineumolL) * 0.005) +
(as.numeric(datasetR$Anaemia) * 0.242) +
(as.numeric(datasetR$Arrhythmia) * 0.608) +
(as.numeric(datasetR$Right) * 0.379) +
(as.numeric(datasetR$ResectedSegments) * 0.179) +
(as.numeric(datasetR$Thoracotomy) * 0.634) +
(as.numeric(datasetR$Malignant) * 0.769)
Pi <- exp(LP) / (1 + exp(LP))
}
# Add LP and Pi as new columns
datasetR$LP <- LP
datasetR$Pi <- Pi
R_datasets[[dataset_name]] <- datasetR
}
#######
# Calculate LP and Pi for datasets with 'thoracoscore' in their name
for (dataset_name in names(T_datasets)) {
datasetT <- T_datasets[[dataset_name]]
# Calculate LP
LP <- -7.3737 +
(as.numeric(datasetT$Age55to65) * 0.7679) +
(as.numeric(datasetT$AgeOver65) * 1.0073) +
(as.numeric(datasetT$MaleSex) * 0.4505) +
(as.numeric(datasetT$ASA) * 0.6057) +
(as.numeric(datasetT$ECOG3orAbove) * 0.689) +
(as.numeric(datasetT$NYHA3or4) * 0.9075) +
(as.numeric(datasetT$Urgency) * 0.8443) +
(as.numeric(datasetT$Pneumonectomy) * 1.2176) +
(as.numeric(datasetT$Malignant) * 1.2423) +
(as.numeric(datasetT$ComorbidityScore1and2) * 0.7447) +
(as.numeric(datasetT$ComorbidityScore3andAbove) * 0.9065)
# Calculate Pi
Pi <- exp(LP) / (1 + exp(LP))
# Add LP and Pi as new columns
datasetT$LP <- LP
datasetT$Pi <- Pi
T_datasets[[dataset_name]] <- datasetT
}
# Take average LP for each patient across the m imputations for the MI resect datasets
#LP_mean <- LP %>%
# group_by(ID) %>%
# summarise(LP_mean = mean(LP))
################################ Calculate target measures ########################################
library(pROC)
########################################## RESECT-90 ########################################
# Create an empty df to store the results
target_measuresR <- data.frame()
for (dataset_name in names(R_datasets)) {
datasetR <- R_datasets[[dataset_name]]
# Specify the outcome variable
outcome_var <- as.numeric(datasetR$Deadat90days) #set it up as.numeric at the start, as I was getting errors but I think something's gone wrong now
# Specify the predicted probabilities
Pi <- datasetR$Pi
# Calculate Brier Score
Brier_individuals <- (Pi - outcome_var)^2
Brier <- mean(Brier_individuals)
Brier_var <- var(Brier_individuals)/length(Pi)
# Calculate Calibration Intercept
LP <- log(Pi/ (1 - Pi))
Cal_Int <- glm(outcome_var ~ offset(LP), family = binomial(link = "logit"))
Cal_Int_var <- vcov(Cal_Int)[1,1]
# Calculate Calibration Slope
Cal_Slope <- glm(outcome_var ~ LP, family = binomial(link = "logit"))
Cal_Slope_var <- vcov(Cal_Slope)[2,2]
# Calculate AUC
AUC <- roc(response = outcome_var,
predictor = as.vector(Pi),
direction = "<",
levels = c(0,1))$auc
AUC_var <- var(AUC, method = "delong") #approximation method used for AUC to calculate the variance
# Create a data frame with target measures for the current dataset
measures <- data.frame("Dataset" = dataset_name,
"Cal_Int" = as.numeric(coef(Cal_Int)),
"Cal_Int_var" = Cal_Int_var,
"Cal_Slope" = as.numeric(coef(Cal_Slope)[2]),
"Cal_Slope_var" = as.numeric(Cal_Slope_var),
"AUC" = as.numeric(AUC),
"AUC_var" = as.numeric(AUC_var),
"Brier" = as.numeric(Brier),
"Brier_var" = as.numeric(Brier_var)
)
# Append the measures to the overall results data frame
target_measuresR <- bind_rows(target_measuresR, measures)
}
# Append the iter variable
#target_measuresR$Iteration <- i
#target_measuresT$Iteration <- i
# Append the results for this iteration to the all_results data frame
#all_results <- rbind(all_results, target_measuresR, target_measuresT)
#}
#all_results %>%
#group_by(Dataset) %>%
#summarise_all(~mean(.))
########################################## Thoracoscore ########################################
# Create an empty df to store the results
target_measuresT <- data.frame()
for (dataset_name in names(T_datasets)) {
datasetT <- T_datasets[[dataset_name]]
# Specify the outcome variable
outcome_var <- as.numeric(datasetT$DeadatDischarge) #set it up as.numeric at the start, as I was getting errors but I think something's gone wrong now
# Specify the predicted probabilities
Pi <- datasetT$Pi
# Calculate Brier Score
Brier_individuals <- (Pi - outcome_var)^2
Brier <- mean(Brier_individuals)
Brier_var <- var(Brier_individuals)/length(Pi)
# Calculate Calibration Intercept
LP <- log(Pi/ (1 - Pi))
Cal_Int <- glm(outcome_var ~ offset(LP), family = binomial(link = "logit"))
Cal_Int_var <- vcov(Cal_Int)[1,1]
# Calculate Calibration Slope
Cal_Slope <- glm(outcome_var ~ LP, family = binomial(link = "logit"))
Cal_Slope_var <- vcov(Cal_Slope)[2,2]
# Calculate AUC
AUC <- roc(response = outcome_var,
predictor = as.vector(Pi),
direction = "<",
levels = c(0,1))$auc
AUC_var <- var(AUC, method = "delong") #approximation method used for AUC to calculate the variance
# Create a data frame with target measures for the current dataset
measures <- data.frame("Dataset" = dataset_name,
"Cal_Int" = as.numeric(coef(Cal_Int)),
"Cal_Int_var" = Cal_Int_var,
"Cal_Slope" = as.numeric(coef(Cal_Slope)[2]),
"Cal_Slope_var" = as.numeric(Cal_Slope_var),
"AUC" = as.numeric(AUC),
"AUC_var" = as.numeric(AUC_var),
"Brier" = as.numeric(Brier),
"Brier_var" = as.numeric(Brier_var)
)
# Append the measures to the overall results data frame
target_measuresT <- rbind(target_measuresT, measures)
}
# Function to create and print calibration plots for each dataset
create_calibration_plots <- function(dataset_list, dataset_names, outcome_var) {
for (i in seq_along(dataset_list)) {
dataset_name <- names(dataset_list)[i]
plot_title <- dataset_names[i]
# Extract necessary data from the dataset
outcome_var_values <- dataset_list[[dataset_name]][[outcome_var]]
Pi <- dataset_list[[dataset_name]]$Pi
# Fit the spline model
spline_model <- stats::glm(outcome_var_values ~ splines::ns(LP, df = 3),
data = dataset_list[[dataset_name]],
family = stats::binomial(link = "logit"))
# Predict with spline model
spline_preds <- stats::predict(spline_model, type = "response", se = TRUE)
# Create the data frame for the calibration plot
plot_data <- data.frame("p" = Pi,
"o" = spline_preds$fit)
# Create the calibration plot using ggplot2
calibration_plot <- ggplot2::ggplot(plot_data, ggplot2::aes(x = p, y = o)) +
ggplot2::geom_line(ggplot2::aes(linetype = "Calibration Curve", colour = "Calibration Curve")) +
ggplot2::geom_abline(ggplot2::aes(intercept = 0, slope = 1, linetype = "Reference", colour = "Reference"), show.legend = FALSE) +
ggplot2::geom_point(alpha = 0) +
ggplot2::coord_fixed() +
ggplot2::xlim(c(0,1)) + ylim(c(0,1)) +
ggplot2::theme_bw(base_size = 12) +
ggplot2::labs(color = "Guide name", linetype = "Guide name") +
ggplot2::scale_linetype_manual(values = c("dashed", "solid"), breaks = c("Reference", "Calibration Curve"), labels = c("Reference", "Calibration Curve")) +
ggplot2::scale_colour_manual(values = c("black", "blue"), breaks = c("Reference", "Calibration Curve")) +
ggplot2::theme(legend.title = ggplot2::element_blank()) +
ggplot2::ggtitle(plot_title)
# Print the calibration plot
print(calibration_plot)
}
}
# List of dataset names and their new names for Resect datasets
resect_datasets <- list(MI_noY_val_resect = resect_datasets_LP$MI_noY_val_resect,
MI_withY_val_resect = resect_datasets_LP$MI_withY_val_resect,
MI_noY_imp_resect = resect_datasets_LP$MI_noY_imp_resect,
MI_withY_imp_resect = resect_datasets_LP$MI_withY_imp_resect,
CCA_val_resect = resect_datasets_LP$CCA_val_resect,
mean_zero_val_resect = resect_datasets_LP$mean_zero_val_resect,
mean_zero_imp_resect = resect_datasets_LP$mean_zero_imp_resect)
new_namesR <- c("Resect: MI no Y at validation", "Resect: MI with Y at validation",
"Resect: MI no Y at implementation", "Resect: MI with Y at implementation", "Resect: CCA at validation",
"Resect: Mean + Risk Factor Absent at validation",
"Resect: Mean + Risk Factor Absent at implementation")
# List of dataset names and their new names for Thoracoscore datasets
thoracoscore_datasets <- list(MI_noY_val_thoracoscore = thoracoscore_datasets_LP$MI_noY_val_thoracoscore,
MI_withY_val_thoracoscore = thoracoscore_datasets_LP$MI_withY_val_thoracoscore,
MI_noY_imp_thoracoscore = thoracoscore_datasets_LP$MI_noY_imp_thoracoscore,
MI_withY_imp_thoracoscore = thoracoscore_datasets_LP$MI_withY_imp_thoracoscore,
CCA_val_thoracoscore = thoracoscore_datasets_LP$CCA_val_thoracoscore,
mean_zero_val_thoracoscore = thoracoscore_datasets_LP$mean_zero_val_thoracoscore,
mean_zero_imp_thoracoscore = thoracoscore_datasets_LP$mean_zero_imp_thoracoscore)
new_namesT <- c("Thoracoscore: MI no Y at validation", "Thoracoscore: MI with Y at validation",
"Thoracoscore: MI no Y at implementation", "Thoracoscore: MI with Y at implementation", "Thoracoscore: CCA at validation",
"Thoracoscore: Mean + Risk Factor Absent at validation",
"Thoracoscore: Mean + Risk Factor Absent at implementation")
# Example usage for Resect datasets:
create_calibration_plots(dataset_list = resect_datasets,
dataset_names = new_namesR,
outcome_var = "Deadat90days")
# Example usage for Thoracoscore datasets:
create_calibration_plots(dataset_list = thoracoscore_datasets,
dataset_names = new_namesT,
outcome_var = "DeadatDischarge")
### ### ### ### ### ### ### ### ###
### ### ### ### ### ### ### ### ###
### ### ### ### ### ### ### ### ###
### data manipulation before bias calc
#turn data into long format and rename TM
target_measuresR_long <- target_measuresR %>%
pivot_longer(cols = c("Cal_Int", "Cal_Slope", "AUC", "Brier"), names_to = "target_measures", values_to = "estimates") %>%
select(Dataset, target_measures, estimates) %>%
mutate(target_measures = recode(target_measures,
Cal_Int = 'Calibration Intercept',
Cal_Slope = 'Calibration Slope',
AUC = 'AUC',
Brier = 'Brier Score')) %>%
mutate(Dataset = case_when(
Dataset == "MI_noY_val_resect" ~ "MI no Y at validation",
Dataset == "MI_withY_val_resect" ~ "MI with Y at validation",
Dataset == "MI_noY_imp_resect" ~ "MI no Y at implementation",
Dataset == "MI_withY_imp_resect" ~ "MI with Y at implementation",
Dataset == "CCA_val_resect" ~ "CCA at validation",
Dataset == "mean_zero_val_resect" ~ "Mean + Risk Factor Absent at validation",
Dataset == "mean_zero_imp_resect" ~ "Mean + Risk Factor Absent at implementation",
TRUE ~ Dataset
))
#split the data into val and imp
R_val <- target_measuresR_long[target_measuresR_long$Dataset %like% "validation", ]
R_imp <- target_measuresR_long[target_measuresR_long$Dataset %like% "implementation", ]
#############################################################################
#############################################################################
#turn data into long format and rename TM
target_measuresT_long <- target_measuresT %>%
pivot_longer(cols = c("Cal_Int", "Cal_Slope", "AUC", "Brier"), names_to = "target_measures", values_to = "estimates") %>%
select(Dataset, target_measures, estimates) %>%
mutate(target_measures = recode(target_measures,
Cal_Int = 'Calibration Intercept',
Cal_Slope = 'Calibration Slope',
AUC = 'AUC',
Brier = 'Brier Score')) %>%
mutate(Dataset = case_when(
Dataset == "MI_noY_val_thoracoscore" ~ "MI no Y at validation",
Dataset == "MI_withY_val_thoracoscore" ~ "MI with Y at validation",
Dataset == "MI_noY_imp_thoracoscore" ~ "MI no Y at implementation",
Dataset == "MI_withY_imp_thoracoscore" ~ "MI with Y at implementation",
Dataset == "CCA_val_thoracoscore" ~ "CCA at validation",
Dataset == "mean_zero_val_thoracoscore" ~ "Mean + Risk Factor Absent at validation",
Dataset == "mean_zero_imp_thoracoscore" ~ "Mean + Risk Factor Absent at implementation",
TRUE ~ Dataset
))
#split the data into val and imp
T_val <- target_measuresT_long[target_measuresT_long$Dataset %like% "validation", ]
T_imp <- target_measuresT_long[target_measuresT_long$Dataset %like% "implementation", ]
####### BIAS CALCULATIONS #########
### RESECT
## MI no Y at implementation
MInoY_bias_R <- subset(R_imp, Dataset == "MI no Y at implementation") %>%
rename_at(vars("estimates"), function(x) paste0("true_", x)) %>%
left_join(R_val, MInoY_bias_R,
multiple = "all",
by = "target_measures") %>%
mutate(bias = estimates - true_estimates)
# MI with Y at implementation
MIwithY_bias_R <- subset(R_imp, Dataset == "MI with Y at implementation") %>%
rename_at(vars("estimates"), function(x) paste0("true_", x)) %>%
left_join(R_val, MIwithY_bias_R,
multiple = "all",
by = "target_measures") %>%
mutate(bias = estimates - true_estimates)
# Mean + Risk Factor Absent at Implementation
Mean_Zero_R <- subset(R_imp, Dataset == "Mean + Risk Factor Absent at implementation") %>%
rename_at(vars("estimates"), function(x) paste0("true_", x)) %>%
left_join(R_val, Mean_Zero_R,
multiple = "all",
by = "target_measures") %>%
mutate(bias = estimates - true_estimates)
all_bias_R <- MInoY_bias_R %>%
bind_rows(MIwithY_bias_R) %>%
bind_rows(Mean_Zero_R)
### Thoracoscore
## MI no Y at implementation
MInoY_bias_T <- subset(T_imp, Dataset == "MI no Y at implementation") %>%
rename_at(vars("estimates"), function(x) paste0("true_", x)) %>%
left_join(T_val, MInoY_bias_T,
multiple = "all",
by = "target_measures") %>%
mutate(bias = estimates - true_estimates)
# MI with Y at implementation
MIwithY_bias_T <- subset(T_imp, Dataset == "MI with Y at implementation") %>%
rename_at(vars("estimates"), function(x) paste0("true_", x)) %>%
left_join(T_val, MIwithY_bias_T,
multiple = "all",
by = "target_measures") %>%
mutate(bias = estimates - true_estimates)
# Mean + Risk Factor Absent at Implementation
Mean_Zero_T <- subset(T_imp, Dataset == "Mean + Risk Factor Absent at implementation") %>%
rename_at(vars("estimates"), function(x) paste0("true_", x)) %>%
left_join(T_val, Mean_Zero_T,
multiple = "all",
by = "target_measures") %>%
mutate(bias = estimates - true_estimates)
all_bias_T <- MInoY_bias_T %>%
bind_rows(MIwithY_bias_T) %>%
bind_rows(Mean_Zero_T)
#### plot bias
all_bias_R$target_measures <- factor(all_bias_R$target_measures, levels = c("AUC", "Calibration Intercept", "Calibration Slope", "Brier Score"))
all_bias_T$target_measures <- factor(all_bias_T$target_measures, levels = c("AUC", "Calibration Intercept", "Calibration Slope", "Brier Score"))
plot_R <- ggplot(data = all_bias_R, aes(x = bias, y = Dataset.y, color = factor(target_measures),
shape = factor(target_measures))) +
geom_point(size = 3, stroke = 0.5) +
guides(color = guide_legend(reverse = TRUE)) +
scale_shape_manual(values = c(8, 17, 16, 15)) +
scale_color_brewer(palette = "Set1") +
geom_vline(xintercept = 0, linetype = "dotted") +
xlab("Bias") +
ylab("Validation Data Imputation Methods") +
theme_minimal() +
theme(
legend.position = "none",
axis.text = element_text(size = 14),
axis.title = element_text(size = 16, face = "bold"),
axis.text.x = element_text(size = 14),
axis.text.y = element_text(size = 14),
strip.text = element_text(size = 16),
panel.background = element_rect(fill = "gray90"),
panel.spacing.x = unit(0.5, "lines")
) +
ggh4x::facet_grid2(target_measures ~ Dataset.x, scales = "free_x", independent = "x") +
scale_x_continuous(limits = function(x) c(-max(abs(x)), max(abs(x)))) +
theme(
panel.border = element_rect(color = "black", fill = NA, size = 1.5),
strip.text = element_text(size = 14, hjust = 0.5),
strip.placement = "outside"
) +
ggtitle("Missingness mechanisms at model implementation") +
theme(plot.title = element_text(face = "bold", size = 16, hjust = 0.5))
plot_R <- plot_R + theme(panel.grid.major = element_line(size = 1.5))
print(plot_R)
#####
plot_T <- ggplot(data = all_bias_T, aes(x = bias, y = Dataset.y, color = factor(target_measures),
shape = factor(target_measures))) +
geom_point(size = 3, stroke = 0.5) +
guides(color = guide_legend(reverse = TRUE)) +
scale_shape_manual(values = c(8, 17, 16, 15)) +
scale_color_brewer(palette = "Set1") +
geom_vline(xintercept = 0, linetype = "dotted") +
xlab("Bias") +
ylab("Validation Data Imputation Methods") +
theme_minimal() +
theme(
legend.position = "none",
axis.text = element_text(size = 14),
axis.title = element_text(size = 16, face = "bold"),
axis.text.x = element_text(size = 14),
axis.text.y = element_text(size = 14),
strip.text = element_text(size = 16),
panel.background = element_rect(fill = "gray90"),
panel.spacing.x = unit(0.5, "lines")
) +
ggh4x::facet_grid2(target_measures ~ Dataset.x, scales = "free_x", independent = "x") +
scale_x_continuous(limits = function(x) c(-max(abs(x)), max(abs(x)))) +
theme(
panel.border = element_rect(color = "black", fill = NA, size = 1.5),
strip.text = element_text(size = 14, hjust = 0.5),
strip.placement = "outside"
) +
ggtitle("Missingness mechanisms at model implementation") +
theme(plot.title = element_text(face = "bold", size = 16, hjust = 0.5))
plot_T <- plot_T + theme(panel.grid.major = element_line(size = 1.5))
print(plot_T)
##