This document presents a brief summary of reproducing results from the paper Introducing WESAD, a multimodal dataset for Wearable Stress and Affect Detection
- Check Notebook: WESAD_Data_Exploration.ipynb
- 23,206.404 total records in preprocessed sensor signals prior segmentation
- Segmentation of the (preprocessed) sensor signals was done using a 60-second sliding window, with a window shift of 0.25 seconds and default sampling rate (700 Hz). A total of 79 (out of 81) features were computed. A summary of total windows obtained in the process is shown below
Subject | Windows |
---|---|
S2 | 7764 |
S3 | 7900 |
S4 | 7941 |
S5 | 8148 |
S6 | 8088 |
S7 | 8073 |
S8 | 8116 |
S9 | 8068 |
S10 | 8388 |
S11 | 8192 |
S13 | 8185 |
S14 | 8189 |
S15 | 8212 |
S16 | 8165 |
S17 | 8384 |
TOTAL | 121813 |
- WIP
- We trained a Random Forest (RF), AdaBoost (AB) and Latent Discriminant Analysis (LDA) models suing different sets of sensor modalities.
- Each setup was run five times so mean and std of scores are reported.
- Final scores within each experiment were averaged using a LOSO (Leave One Subject Out) cross-validation.
- Evaluation using each of the six sensor modalities separately:
rf_f1 | rf_acc | rf_b_f1 | rf_b_acc | ab_f1 | ab_acc | ab_b_f1 | ab_b_acc | lda_f1 | lda_acc | lda_b_f1 | lda_b_acc | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | 0.395361 | 0.559278 | 0.569841 | 0.723911 | 0.448804 | 0.591598 | 0.588321 | 0.733027 | 0.400382 | 0.597001 | 0.542222 | 0.70007 |
ECG | 0.518569 | 0.660007 | 0.7963 | 0.839966 | 0.515433 | 0.662472 | 0.800814 | 0.8441 | 0.515813 | 0.70816 | 0.809485 | 0.865115 |
EDA | 0.643974 | 0.667019 | 0.749781 | 0.787745 | 0.621201 | 0.645761 | 0.741442 | 0.781814 | 0.451855 | 0.57464 | 0.692621 | 0.764252 |
EMG | 0.462594 | 0.607954 | 0.599067 | 0.713775 | 0.480842 | 0.620192 | 0.610554 | 0.723836 | 0.445108 | 0.599009 | 0.614172 | 0.724727 |
RESP | 0.545764 | 0.676278 | 0.78608 | 0.824339 | 0.544442 | 0.68253 | 0.785471 | 0.821546 | 0.545973 | 0.698706 | 0.796305 | 0.841577 |
TEMP | 0.408837 | 0.499755 | 0.53513 | 0.642769 | 0.386727 | 0.494761 | 0.500478 | 0.61475 | 0.289719 | 0.575443 | 0.430318 | 0.705284 |
* Column names from above table have the following notation: {model}_{binary_classifier?}_{eval_score_metric}
- Check the notebook ML Classifiers per Modality.ipynb for a full report on results on each LOSO cross-validation
- Evaluation scores using all modalities:
mean | std | |
---|---|---|
rf_f1 | 57.14 | 0.92 |
rf_acc** | 69.07 | 0.62 |
rf_b_f1 | 76.07 | 0.23 |
rf_b_acc** | 84.55 | 0.22 |
ab_f1 | 54.38 | 0.95 |
ab_acc | 63.62 | 0.68 |
ab_b_f1 | 73.35 | 0.56 |
ab_b_acc | 80.02 | 0.44 |
lda_f1 | 65.31 | - |
lda_acc* | 71.63 | - |
lda_b_f1 | 86.07 | - |
lda_b_acc* | 89.03 | - |
* Best model in terms of accuracy
** Runner-up
- Evaluation scores using physiological modalities:
mean | std | |
---|---|---|
rf_f1 | 60.97 | 0.93 |
rf_acc** | 71.07 | 0.36 |
rf_b_f1 | 78.58 | 0.61 |
rf_b_acc** | 85.52 | 0.47 |
ab_f1 | 59.65 | 1.12 |
ab_acc | 67.47 | 0.97 |
ab_b_f1 | 77.17 | 0.44 |
ab_b_acc | 82.89 | 0.47 |
lda_f1 | 66.62 | - |
lda_acc* | 74.02 | - |
lda_b_f1 | 86.43 | - |
lda_b_acc* | 89.86 | - |
-
For a more in-depth analysis of results for (2) & (3) check the notebook ML Classifiers - Chest Device.ipynb
-
Feature importance on the Three-class classification: baseline vs stress vs amusement
idx | feature | imp |
---|---|---|
64 | RESP_exhal_mean | 0.239672 |
36 | EDA_SCR_no | 0.133317 |
15 | ECG_hr_mean | 0.106798 |
56 | EMG_peak_amp_sum | 0.0847333 |
5 | ACC_xyz_std | 0.0697695 |
74 | TEMP_min | 0.0576274 |
46 | EDA_std | 0.0369737 |
58 | EMG_peak_no | 0.0243881 |
6 | ACC_xzy_mean | 0.0238573 |
1 | ACC_x_mean | 0.0235114 |
- Feature importance on the Binary classification: stress vs non-stress
idx | feature | imp |
---|---|---|
64 | RESP_exhal_mean | 0.395155 |
15 | ECG_hr_mean | 0.157471 |
36 | EDA_SCR_no | 0.139167 |
72 | TEMP_max | 0.0479302 |
0 | ACC_x_absint | 0.042426 |
58 | EMG_peak_no | 0.0381359 |
44 | EDA_scr_area | 0.0348049 |
65 | RESP_exhal_std | 0.023892 |
56 | EMG_peak_amp_sum | 0.0164472 |
8 | ACC_y_mean | 0.0162326 |
- WIP