-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathblackbox.py
executable file
·763 lines (640 loc) · 29 KB
/
blackbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
# Copyright 2018 The Defense-GAN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Testing blackbox Defense-GAN models. This module is based on MNIST tutorial
of cleverhans."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import _pickle as cPickle
import logging
import os
import re
import sys
import keras.backend as K
import numpy as np
import tensorflow as tf
from six.moves import xrange
from tensorflow.python.platform import flags
from cleverhans.attacks import FastGradientMethod
from cleverhans.attacks_tf import jacobian_graph, jacobian_augmentation
from cleverhans.utils import set_log_level, to_categorical
from cleverhans.utils_tf import model_train, model_eval, batch_eval
from datasets.celeba import CelebA
from datasets.dataset import PickleLazyDataset
from models.gan import MnistDefenseGAN, FmnistDefenseDefenseGAN, \
CelebADefenseGAN
from utils.config import load_config
from utils.gan_defense import model_eval_gan
from utils.misc import ensure_dir
from utils.network_builder import model_a, model_b, model_c, model_d, \
model_e, model_f, model_z, model_q
from utils.visualize import save_images_files
FLAGS = flags.FLAGS
dataset_gan_dict = {
'mnist': MnistDefenseGAN,
'f-mnist': FmnistDefenseDefenseGAN,
'celeba': CelebADefenseGAN,
}
# orig_ refers to original images and not reconstructed ones.
# To prepare these cache files run "python main.py --save_ds".
orig_data_path = {k: 'data/cache/{}_pkl'.format(k) for k in
dataset_gan_dict.keys()}
def prep_bbox(sess, images, labels, images_train, labels_train, images_test,
labels_test, nb_epochs, batch_size, learning_rate, rng, gan=None,
adv_training=False, cnn_arch=None):
"""Defines and trains a model that simulates the "remote"
black-box oracle described in https://arxiv.org/abs/1602.02697.
Args:
sess: the TF session
images: the input placeholder
labels: the ouput placeholder
images_train: the training data for the oracle
labels_train: the training labels for the oracle
images_test: the testing data for the oracle
labels_test: the testing labels for the oracle
nb_epochs: number of epochs to train model
batch_size: size of training batches
learning_rate: learning rate for training
rng: numpy.random.RandomState
Returns:
model: The blackbox model function.
predictions: The predictions tensor.
accuracy: Accuracy of the model.
"""
# Define TF model graph (for the black-box model).
model = cnn_arch
if gan:
x_rec = tf.stop_gradient(
gan.reconstruct(images, batch_size=batch_size))
predictions = model(x_rec)
else:
predictions = model(images)
print("Defined TensorFlow model graph.")
train_params = {
'nb_epochs': nb_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate,
}
preds_adv = None
if adv_training:
fgsm_par = {'eps': FLAGS.fgsm_eps_tr, 'ord': np.inf, 'clip_min': 0.,
'clip_max': 1.}
if gan:
if any([xx in gan.dataset_name for xx in ['celeba']]):
fgsm_par['clip_min'] = -1.0
fgsm_params = fgsm_par
fgsm = FastGradientMethod(model, sess=sess)
adv_x = fgsm.generate(images, **fgsm_params)
adv_x = tf.stop_gradient(adv_x)
preds_adv = model(adv_x)
model_train(
sess, images, labels, predictions, images_train, labels_train,
args=train_params, rng=rng, predictions_adv=preds_adv,
init_all=False, feed={K.learning_phase(): 1}
)
# Print out the accuracy on legitimate test data.
eval_params = {'batch_size': batch_size}
accuracy = model_eval(
sess, images, labels, predictions, images_test,
labels_test, args=eval_params, feed={K.learning_phase(): 0},
)
print(
'Test accuracy of black-box on legitimate test examples: ' +
str(accuracy)
)
return model, predictions, accuracy
def train_sub(sess, x, y, bbox_preds, X_sub, Y_sub, nb_classes,
nb_epochs_s, batch_size, learning_rate, data_aug, lmbda,
rng, substitute_model=None):
"""This function trains the substitute model as described in
arxiv.org/abs/1602.02697
Args:
sess: TF session
x: input TF placeholder
y: output TF placeholder
bbox_preds: output of black-box model predictions
X_sub: initial substitute training data
Y_sub: initial substitute training labels
nb_classes: number of output classes
nb_epochs_s: number of epochs to train substitute model
batch_size: size of training batches
learning_rate: learning rate for training
data_aug: number of times substitute training data is augmented
lmbda: lambda from arxiv.org/abs/1602.02697
rng: numpy.random.RandomState instance
Returns:
model_sub: The substitute model function.
preds_sub: The substitute prediction tensor.
"""
# Define TF model graph (for the black-box model).
model_sub = substitute_model
preds_sub = model_sub(x)
print("Defined TensorFlow model graph for the substitute.")
# Define the Jacobian symbolically using TensorFlow.
grads = jacobian_graph(preds_sub, x, nb_classes)
# Train the substitute and augment dataset alternatively.
for rho in xrange(data_aug):
print("Substitute training epoch #" + str(rho))
train_params = {
'nb_epochs': nb_epochs_s,
'batch_size': batch_size,
'learning_rate': learning_rate
}
model_train(sess, x, y, preds_sub, X_sub, to_categorical(Y_sub),
init_all=False, args=train_params,
rng=rng, feed={K.learning_phase(): 1})
# If we are not at last substitute training iteration, augment dataset.
if rho < data_aug - 1:
print("Augmenting substitute training data.")
# Perform the Jacobian augmentation.
X_sub = jacobian_augmentation(sess, x, X_sub, Y_sub, grads, lmbda,
feed={K.learning_phase(): 0})
print("Labeling substitute training data.")
# Label the newly generated synthetic points using the black-box.
Y_sub = np.hstack([Y_sub, Y_sub])
X_sub_prev = X_sub[int(len(X_sub) / 2):]
eval_params = {'batch_size': batch_size}
# To initialize the local variables of Defense-GAN.
sess.run(tf.local_variables_initializer())
bbox_val = batch_eval(sess, [x], [bbox_preds], [X_sub_prev],
args=eval_params,
feed={K.learning_phase(): 0})[0]
# Note here that we take the argmax because the adversary
# only has access to the label (not the probabilities) output
# by the black-box model.
Y_sub[int(len(X_sub) / 2):] = np.argmax(bbox_val, axis=1)
return model_sub, preds_sub
def convert_to_onehot(ys):
"""Converts the labels to one-hot vectors."""
max_y = int(np.max(ys))
y_one_hat = np.zeros([len(ys), max_y + 1], np.float32)
for (i, y) in enumerate(ys):
y_one_hat[i, int(y)] = 1.0
return y_one_hat
def get_celeba(data_path, test_on_dev=True, orig_data=False):
"""Generates the CelebA dataset from Pickle files.
Args:
data_path: The path to where pickles are saved.
<model-path>/<split>/pickles/
test_on_dev: Test on the development set.
orig_data: Original data flag. `True` for returning the original
dataset.
Returns:
images: Images of the dataset.
labels: Labels of the loaded images.
"""
dev_name = 'val'
if not test_on_dev:
dev_name = 'test'
ds = CelebA(attribute=FLAGS.attribute)
ds.load()
ds_test = CelebA(attribute=FLAGS.attribute)
ds_test.load(split=dev_name)
train_labels = ds.labels
test_labels = ds_test.labels
def get_pickeldb(split):
train_data_path = os.path.join(data_path, split, 'pickles')
assert os.path.exists(train_data_path)
pkl_files = os.listdir(train_data_path)
pkl_labels = np.array(
[int(re.findall('.*_l(\d+).pkl', pf)[0]) for pf in pkl_files],
np.int32)
pkl_paths = [os.path.join(train_data_path, pf) for pf in
sorted(pkl_files)]
pkl_ds = PickleLazyDataset(pkl_paths, [64, 64, 3])
return pkl_ds, pkl_labels
if orig_data:
train_images = ds.images
test_images = ds_test.images
else:
train_images, train_labels = get_pickeldb('train')
test_images, test_labels = get_pickeldb(dev_name)
return train_images, convert_to_onehot(train_labels), test_images, \
convert_to_onehot(test_labels)
def get_train_test(data_path, test_on_dev=True, model=None,
orig_data=False, max_num=-1):
"""Loads the datasets.
Args:
data_path: The path that contains train,dev,[test] directories
test_on_dev: Test on the development set
model: An instance of `GAN`.
orig_data: `True` for loading original data, `False` to load the
reconstructed images.
Returns:
train_images: Training images.
train_labels: Training labels.
test_images: Testing images.
test_labels: Testing labels.
"""
data_dict = None
if model and not orig_data:
data_dict = model.reconstruct_dataset(max_num_load=max_num)
def get_images_labels_from_pickle(data_path, split):
data_path = os.path.join(data_path, split, 'feats.pkl')
could_load = False
try:
if os.path.exists(data_path):
with open(data_path,'rb') as f:
train_images_gan = cPickle.load(f)
train_labels_gan = cPickle.load(f)
could_load = True
else:
print(
'[!] Run python train.py --cfg <path-to-cfg> --save_ds '
'to prepare the dataset cache files.'
)
exit(1)
except Exception as e:
print(
'[!] Found feats.pkl but could not load it because {}'.format(
str(e)))
if not could_load and not data_dict is None:
train_images_gan, train_labels_gan, train_images_orig = data_dict[
split]
if orig_data:
train_images_gan = train_images_orig
return train_images_gan, convert_to_onehot(train_labels_gan)
train_images, train_lables = \
get_images_labels_from_pickle(data_path, 'train')
test_split = 'test' if test_on_dev else 'dev'
test_images, test_labels = \
get_images_labels_from_pickle(data_path, test_split)
return train_images, train_lables, test_images, test_labels
def get_cached_gan_data(gan, test_on_dev, orig_data_flag=None):
"""Fetches the dataset of a GAN model.
Args:
gan: The GAN model.
test_on_dev: `True` for loading the dev set instead of the test set.
orig_data_flag: `True` for loading the original images not the
reconstructions.
Returns:
train_images: Training images.
train_labels: Training labels.
test_images: Testing images.
test_labels: Testing labels.
"""
FLAGS = flags.FLAGS
if orig_data_flag is None:
if not FLAGS.train_on_recs or FLAGS.defense_type != 'defense_gan':
orig_data_flag = True
else:
orig_data_flag = False
print(orig_data_flag)
if 'celeba' in gan.dataset_name:
train_images, train_labels, test_images, test_labels = get_celeba(
FLAGS.rec_path,
orig_data=orig_data_flag,
)
if FLAGS.num_train > 0:
train_images = train_images[:FLAGS.num_train]
train_labels = train_labels[:FLAGS.num_train]
else:
train_images, train_labels, test_images, test_labels = \
get_train_test(
orig_data_path[gan.dataset_name], test_on_dev=test_on_dev,
model=gan, orig_data=orig_data_flag, max_num=FLAGS.num_train)
return train_images, train_labels, test_images, test_labels
def blackbox(gan, rec_data_path=None, batch_size=128,
learning_rate=0.001, nb_epochs=10, holdout=150, data_aug=6,
nb_epochs_s=10, lmbda=0.1, online_training=False,
train_on_recs=False, test_on_dev=True,
defense_type='none'):
"""MNIST tutorial for the black-box attack from arxiv.org/abs/1602.02697
Args:
train_start: index of first training set example
train_end: index of last training set example
test_start: index of first test set example
test_end: index of last test set example
defense_type: Type of defense against blackbox attacks
Returns:
a dictionary with:
* black-box model accuracy on test set
* substitute model accuracy on test set
* black-box model accuracy on adversarial examples transferred
from the substitute model
"""
FLAGS = flags.FLAGS
# Set logging level to see debug information.
set_log_level(logging.WARNING)
# Dictionary used to keep track and return key accuracies.
accuracies = {}
# Create TF session.
adv_training = False
if defense_type:
if defense_type == 'defense_gan' and gan:
sess = gan.sess
gan_defense_flag = True
else:
gan_defense_flag = False
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
if 'adv_tr' in defense_type:
adv_training = True
else:
gan_defense_flag = False
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
train_images, train_labels, test_images, test_labels = \
get_cached_gan_data(gan, test_on_dev, orig_data_flag=True)
x_shape, classes = list(train_images.shape[1:]), train_labels.shape[1]
nb_classes = classes
type_to_models = {
'A': model_a, 'B': model_b, 'C': model_c, 'D': model_d, 'E': model_e,
'F': model_f, 'Q': model_q, 'Z': model_z
}
bb_model = type_to_models[FLAGS.bb_model](
input_shape=[None] + x_shape, nb_classes=train_labels.shape[1],
)
sub_model = type_to_models[FLAGS.sub_model](
input_shape=[None] + x_shape, nb_classes=train_labels.shape[1],
)
if FLAGS.debug:
train_images = train_images[:20 * batch_size]
train_labels = train_labels[:20 * batch_size]
debug_dir = os.path.join('debug', 'blackbox', FLAGS.debug_dir)
ensure_dir(debug_dir)
x_debug_test = test_images[:batch_size]
# Initialize substitute training set reserved for adversary
images_sub = test_images[:holdout]
labels_sub = np.argmax(test_labels[:holdout], axis=1)
# Redefine test set as remaining samples unavailable to adversaries
if FLAGS.num_tests > 0:
test_images = test_images[:FLAGS.num_tests]
test_labels = test_labels[:FLAGS.num_tests]
test_images = test_images[holdout:]
test_labels = test_labels[holdout:]
# Define input and output TF placeholders
if FLAGS.image_dim[0] == 3:
FLAGS.image_dim = [FLAGS.image_dim[1], FLAGS.image_dim[2],
FLAGS.image_dim[0]]
images_tensor = tf.placeholder(tf.float32, shape=[None] + x_shape)
labels_tensor = tf.placeholder(tf.float32, shape=(None, classes))
rng = np.random.RandomState([11, 24, 1990])
tf.set_random_seed(11241990)
train_images_bb, train_labels_bb, test_images_bb, test_labels_bb = \
train_images, train_labels, test_images, \
test_labels
cur_gan = None
if defense_type:
if 'gan' in defense_type:
# Load cached dataset reconstructions.
if online_training and not train_on_recs:
cur_gan = gan
elif not online_training and rec_data_path:
train_images_bb, train_labels_bb, test_images_bb, \
test_labels_bb = get_cached_gan_data(
gan, test_on_dev, orig_data_flag=False)
else:
assert not train_on_recs
if FLAGS.debug:
train_images_bb = train_images_bb[:20 * batch_size]
train_labels_bb = train_labels_bb[:20 * batch_size]
# Prepare the black_box model.
prep_bbox_out = prep_bbox(
sess, images_tensor, labels_tensor, train_images_bb,
train_labels_bb, test_images_bb, test_labels_bb, nb_epochs,
batch_size, learning_rate, rng=rng, gan=cur_gan,
adv_training=adv_training,
cnn_arch=bb_model)
else:
prep_bbox_out = prep_bbox(sess, images_tensor, labels_tensor,
train_images_bb, train_labels_bb,
test_images_bb, test_labels_bb,
nb_epochs, batch_size, learning_rate,
rng=rng, gan=cur_gan,
adv_training=adv_training,
cnn_arch=bb_model)
model, bbox_preds, accuracies['bbox'] = prep_bbox_out
# Train substitute using method from https://arxiv.org/abs/1602.02697
print("Training the substitute model.")
reconstructed_tensors = tf.stop_gradient(
gan.reconstruct(images_tensor, batch_size=batch_size,
reconstructor_id=1))
model_sub, preds_sub = train_sub(
sess, images_tensor, labels_tensor,
model(reconstructed_tensors), images_sub,
labels_sub,
nb_classes, nb_epochs_s, batch_size,
learning_rate, data_aug, lmbda, rng=rng,
substitute_model=sub_model,
)
accuracies['sub'] = 0
# Initialize the Fast Gradient Sign Method (FGSM) attack object.
fgsm_par = {
'eps': FLAGS.fgsm_eps, 'ord': np.inf, 'clip_min': 0., 'clip_max': 1.
}
if gan:
if gan.dataset_name == 'celeba':
fgsm_par['clip_min'] = -1.0
fgsm = FastGradientMethod(model_sub, sess=sess)
# Craft adversarial examples using the substitute.
eval_params = {'batch_size': batch_size}
x_adv_sub = fgsm.generate(images_tensor, **fgsm_par)
if FLAGS.debug and gan is not None: # To see some qualitative results.
reconstructed_tensors = gan.reconstruct(x_adv_sub, batch_size=batch_size,
reconstructor_id=2)
x_rec_orig = gan.reconstruct(images_tensor, batch_size=batch_size,
reconstructor_id=3)
x_adv_sub_val = sess.run(x_adv_sub,
feed_dict={images_tensor: x_debug_test,
K.learning_phase(): 0})
sess.run(tf.local_variables_initializer())
x_rec_debug_val, x_rec_orig_val = sess.run(
[reconstructed_tensors, x_rec_orig],
feed_dict={
images_tensor: x_debug_test,
K.learning_phase(): 0})
save_images_files(x_adv_sub_val, output_dir=debug_dir,
postfix='adv')
postfix = 'gen_rec'
save_images_files(x_rec_debug_val, output_dir=debug_dir,
postfix=postfix)
save_images_files(x_debug_test, output_dir=debug_dir,
postfix='orig')
save_images_files(x_rec_orig_val, output_dir=debug_dir,
postfix='orig_rec')
return
if gan_defense_flag:
reconstructed_tensors = gan.reconstruct(
x_adv_sub, batch_size=batch_size, reconstructor_id=4,
)
num_dims = len(images_tensor.get_shape())
avg_inds = list(range(1, num_dims))
diff_op = tf.reduce_mean(tf.square(x_adv_sub - reconstructed_tensors),
axis=avg_inds)
outs = model_eval_gan(sess, images_tensor, labels_tensor,
predictions=model(reconstructed_tensors),
test_images=test_images, test_labels=test_labels,
args=eval_params, diff_op=diff_op,
feed={K.learning_phase(): 0})
accuracies['bbox_on_sub_adv_ex'] = outs[0]
accuracies['roc_info'] = outs[1]
print('Test accuracy of oracle on adversarial examples generated '
'using the substitute: ' + str(outs[0]))
else:
accuracy = model_eval(sess, images_tensor, labels_tensor,
model(x_adv_sub), test_images,
test_labels,
args=eval_params, feed={K.learning_phase(): 0})
print('Test accuracy of oracle on adversarial examples generated '
'using the substitute: ' + str(accuracy))
accuracies['bbox_on_sub_adv_ex'] = accuracy
return accuracies
def _get_results_dir_filename(gan):
result_file_name = 'sub={:d}_eps={:.2f}.txt'.format(FLAGS.data_aug,
FLAGS.fgsm_eps)
results_dir = os.path.join('results', '{}_{}'.format(
FLAGS.defense_type, FLAGS.dataset_name))
if FLAGS.rec_path and FLAGS.defense_type == 'defense_gan':
results_dir = gan.checkpoint_dir.replace('output', 'results')
result_file_name = \
'teRR={:d}_teLR={:.4f}_teIter={:d}_sub={:d}_eps={:.2f}.txt'.format(
gan.rec_rr,
gan.rec_lr,
gan.rec_iters,
FLAGS.data_aug,
FLAGS.fgsm_eps)
if not FLAGS.train_on_recs:
result_file_name = 'orig_' + result_file_name
elif FLAGS.defense_type == 'adv_tr':
result_file_name = 'sub={:d}_trEps={:.2f}_eps={:.2f}.txt'.format(
FLAGS.data_aug, FLAGS.fgsm_eps_tr,
FLAGS.fgsm_eps)
if FLAGS.num_tests > -1:
result_file_name = 'numtest={}_'.format(
FLAGS.num_tests) + result_file_name
if FLAGS.num_train > -1:
result_file_name = 'numtrain={}_'.format(
FLAGS.num_train) + result_file_name
result_file_name = 'bbModel={}_subModel={}_'.format(FLAGS.bb_model,
FLAGS.sub_model) \
+ result_file_name
return results_dir, result_file_name
def main(cfg, argv=None):
FLAGS = tf.app.flags.FLAGS
GAN = dataset_gan_dict[FLAGS.dataset_name]
gan = GAN(cfg=cfg, test_mode=True)
gan.load_generator()
# Setting test time reconstruction hyper parameters.
[tr_rr, tr_lr, tr_iters] = [FLAGS.rec_rr, FLAGS.rec_lr, FLAGS.rec_iters]
if FLAGS.defense_type.lower() != 'none':
if FLAGS.rec_path and FLAGS.defense_type == 'defense_gan':
# extract hyper parameters from reconstruction path.
if FLAGS.rec_path:
train_param_re = re.compile('recs_rr(.*)_lr(.*)_iters(.*)')
[tr_rr, tr_lr, tr_iters] = \
train_param_re.findall(FLAGS.rec_path)[0]
gan.rec_rr = int(tr_rr)
gan.rec_lr = float(tr_lr)
gan.rec_iters = int(tr_iters)
elif FLAGS.defense_type == 'defense_gan':
assert FLAGS.online_training or not FLAGS.train_on_recs
if FLAGS.override:
gan.rec_rr = int(tr_rr)
gan.rec_lr = float(tr_lr)
gan.rec_iters = int(tr_iters)
# Setting the reuslts directory
results_dir, result_file_name = _get_results_dir_filename(gan)
# Result file name. The counter makes sure we are not overwriting the
# results.
counter = 0
temp_fp = str(counter) + '_' + result_file_name
results_dir = os.path.join(results_dir, FLAGS.results_dir)
temp_final_fp = os.path.join(results_dir, temp_fp)
while os.path.exists(temp_final_fp):
counter += 1
temp_fp = str(counter) + '_' + result_file_name
temp_final_fp = os.path.join(results_dir, temp_fp)
result_file_name = temp_fp
sub_result_path = os.path.join(results_dir, result_file_name)
accuracies = blackbox(gan, rec_data_path=FLAGS.rec_path,
batch_size=FLAGS.batch_size,
learning_rate=FLAGS.learning_rate,
nb_epochs=FLAGS.nb_epochs, holdout=FLAGS.holdout,
data_aug=FLAGS.data_aug,
nb_epochs_s=FLAGS.nb_epochs_s,
lmbda=FLAGS.lmbda,
online_training=FLAGS.online_training,
train_on_recs=FLAGS.train_on_recs,
defense_type=FLAGS.defense_type)
ensure_dir(results_dir)
with open(sub_result_path, 'a') as f:
f.writelines([str(accuracies[x]) + ' ' for x in
['bbox', 'sub', 'bbox_on_sub_adv_ex']])
f.write('\n')
print('[*] saved accuracy in {}'.format(sub_result_path))
if 'roc_info' in accuracies.keys(): # For attack detection.
pkl_result_path = sub_result_path.replace('.txt', '_roc.pkl')
with open(pkl_result_path, 'w') as f:
cPickle.dump(accuracies['roc_info'], f, cPickle.HIGHEST_PROTOCOL)
print('[*] saved roc_info in {}'.format(sub_result_path))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', required=True, help='Config file')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args, _ = parser.parse_known_args()
return args
if __name__ == '__main__':
args = parse_args()
# Note: The load_config() call will convert all the parameters that are defined in
# experiments/config files into FLAGS.param_name and can be passed in from command line.
# arguments : python blackbox.py --cfg <config_path> --<param_name> <param_value>
cfg = load_config(args.cfg)
flags = tf.app.flags
flags.DEFINE_integer('nb_classes', 10, 'Number of classes.')
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training '
'the black-box model.')
flags.DEFINE_integer('nb_epochs', 10, 'Number of epochs to train the '
'blackbox model.')
flags.DEFINE_integer('holdout', 150, 'Test set holdout for adversary.')
flags.DEFINE_integer('data_aug', 6, 'Number of substitute data augmentations.')
flags.DEFINE_integer('nb_epochs_s', 10, 'Training epochs for substitute.')
flags.DEFINE_float('lmbda', 0.1, 'Lambda from arxiv.org/abs/1602.02697')
flags.DEFINE_float('fgsm_eps', 0.3, 'FGSM epsilon.')
flags.DEFINE_float('fgsm_eps_tr', 0.15, 'FGSM epsilon for adversarial '
'training.')
flags.DEFINE_string('rec_path', None, 'Path to Defense-GAN '
'reconstructions.')
flags.DEFINE_integer('num_tests', 2000, 'Number of test samples.')
flags.DEFINE_integer('random_test_iter', -1,
'Number of random sampling for testing the '
'classifier.')
flags.DEFINE_boolean("online_training", False,
'Train the base classifier based on online '
'reconstructions from Defense-GAN, as opposed to '
'using the cached reconstructions.')
flags.DEFINE_string("defense_type", "none", "Type of defense "
"[defense_gan|adv_tr|none]")
flags.DEFINE_string("results_dir", None, "The path to results.")
flags.DEFINE_boolean("train_on_recs", False,
"Train the black-box model on Defense-GAN "
"reconstructions.")
flags.DEFINE_integer('num_train', -1, 'Number of training samples for '
'the black-box model.')
flags.DEFINE_string("bb_model", 'F',
"The architecture of the classifier model.")
flags.DEFINE_string("sub_model", 'E', "The architecture of the "
"substitute model.")
flags.DEFINE_string("debug_dir", None, "Directory for debug outputs.")
flags.DEFINE_boolean("debug", None, "Directory for debug outputs.")
flags.DEFINE_boolean("override", None, "Overrides the test hyperparams.")
main_cfg = lambda x: main(cfg, x)
tf.app.run(main=main_cfg)