-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathgenerate_report.py
145 lines (116 loc) · 4.6 KB
/
generate_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import json
from tempfile import NamedTemporaryFile
from swebench import (
get_eval_refs,
get_model_eval_summary,
get_model_report,
get_instances,
)
def _generate_table(
title: str, model_name_or_path: str, instances_ids: list[str], instances: dict
):
table_md = f"""\n\n### {title}
| Instance ID | Repository | Testbed version |
| ----------- | ---------- | --------------- |
"""
instances_ids.sort()
for instance_id in instances_ids:
table_md += f"| [{instance_id}](logs/{instance_id}.{model_name_or_path}.eval.log) "
table_md += f"| {instances[instance_id]['repo']} "
table_md += f"| {instances[instance_id]['version']} |\n"
return table_md
def convert_json_to_jsonl(input_path: str, output_path: str):
with open(input_path, "r") as input_file:
data = json.load(input_file)
with open(output_path, "w") as output_file:
for item in data:
output_file.write(json.dumps(item) + "\n")
def generate_report(
swe_bench_tasks: str, predictions_path: str, log_dir: str, output_dir: str
):
instances = get_eval_refs(swe_bench_tasks)
with NamedTemporaryFile(buffering=0, prefix="predictions-", suffix=".jsonl") as jsonl_file:
if predictions_path.endswith(".json"):
convert_json_to_jsonl(predictions_path, jsonl_file.name)
predictions_path = jsonl_file.name
predictions = get_instances(predictions_path)
model_name_or_path = predictions[0]["model_name_or_path"]
summary = get_model_eval_summary(
predicts_path=predictions_path,
eval_dir=log_dir,
swe_bench_tasks=swe_bench_tasks,
)
with open(f"{output_dir}/summary.json", "w") as f:
f.write(json.dumps(summary, indent=4))
report = get_model_report(
verbose=True,
model=model_name_or_path,
predictions_path=predictions_path,
log_dir=log_dir,
swe_bench_tasks=swe_bench_tasks,
)
report = {k: sorted(v) for k, v in report.items()}
with open(f"{output_dir}/report.json", "w") as f:
f.write(json.dumps(report, indent=4))
report_md = f"# Benchmark results"
case_resolution = ""
keys = ["Patch Apply Success", "Patch Apply Success + Failure"]
for key in keys:
if key not in summary:
continue
report_by_patch_status = summary[key]
case_resolution += f"""\n\n## {key}
| Resolved | Count | Rate |
| -------- | ----- | ---- |
| Yes | {report_by_patch_status['case_resolution_counts'].get('RESOLVED_FULL', 0)} | {report_by_patch_status['case_resolution_rates'].get('RESOLVED_FULL', 0)}% |
| Partially | {report_by_patch_status['case_resolution_counts'].get('RESOLVED_PARTIAL', 0)} | {report_by_patch_status['case_resolution_rates'].get('RESOLVED_PARTIAL', 0)}% |
| No | {report_by_patch_status['case_resolution_counts'].get('RESOLVED_NO', 0)} | {report_by_patch_status['case_resolution_rates'].get('RESOLVED_NO', 0)}% |
"""""
print(case_resolution)
report_md += case_resolution
report_md += f"\n\n## Benchmark instances"
generated = report["generated"]
resolved = report["resolved"]
applied = report["applied"]
generated_not_applied = [item for item in generated if item not in applied]
applied_not_resolved = [item for item in applied if item not in resolved]
if generated_not_applied:
report_md += _generate_table(
"Generated but not applied",
model_name_or_path,
generated_not_applied,
instances,
)
if applied_not_resolved:
report_md += _generate_table(
"Applied but not resolved",
model_name_or_path,
applied_not_resolved,
instances,
)
if resolved:
report_md += _generate_table(
"Resolved", model_name_or_path, resolved, instances
)
with open(f"{output_dir}/README.md", "w") as f:
f.write(report_md)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--predictions_path", type=str, help="Path to predictions file", required=True
)
parser.add_argument(
"--log_dir", type=str, help="Path to log directory", required=True
)
parser.add_argument(
"--swe_bench_tasks",
type=str,
help="Path to dataset file or HF datasets name",
required=True,
)
parser.add_argument(
"--output_dir", type=str, help="Path to output directory", required=True
)
args = parser.parse_args()
generate_report(**vars(args))