-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
85 lines (79 loc) · 2.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
import importlib
import runner
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str)
# parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
module = importlib.import_module(args.config)
params = getattr(module, 'params')
universe, domain, task = params['universe'], params['domain'], params['task']
epoch_length = params['kwargs']['epoch_length']
NUM_EPOCHS_PER_DOMAIN = {
'Pendulum':int(19),
'Hopper': int(95),
'HopperNT': int(95),
'Walker2d': int(195),
'Walker2dNT': int(195),
'Ant': int(295),
}
params['kwargs']['n_epochs'] = NUM_EPOCHS_PER_DOMAIN[domain]
#params['kwargs']['n_initial_exploration_steps'] = 5000
params['kwargs']['reparameterize'] = True
params['kwargs']['lr'] = 3e-4
params['kwargs']['target_update_interval'] = 1
params['kwargs']['tau'] = 5e-3
params['kwargs']['store_extra_policy_info'] = False
params['kwargs']['action_prior'] = 'uniform'
variant_spec = {
'environment_params': {
'training': {
'domain': domain,
'task': task,
'universe': universe,
'kwargs': {},
},
'evaluation': {
'domain': domain,
'task': task,
'universe': universe,
'kwargs': {},
},
},
'policy_params': {
'type': 'GaussianPolicy',
'kwargs': {
'hidden_layer_sizes': (256, 256),
'squash': True,
}
},
'Q_params': {
'type': 'double_feedforward_Q_function',
'kwargs': {
'hidden_layer_sizes': (256, 256),
}
},
'algorithm_params': params,
'replay_pool_params': {
'type': 'SimpleReplayPool',
'kwargs': {
'max_size': int(1e6),
}
},
'sampler_params': {
'type': 'SimpleSampler',
'kwargs': {
'max_path_length': epoch_length,
'min_pool_size': epoch_length,
'batch_size': 256,
}
},
'run_params': {
# 'seed': args.seed,
'checkpoint_at_end': True,
'checkpoint_frequency': NUM_EPOCHS_PER_DOMAIN[domain] // 10,
'checkpoint_replay_pool': False,
},
}
exp_runner = runner.ExperimentRunner(variant_spec)
diagnostics = exp_runner.train()