-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
68 lines (56 loc) · 2.91 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import tensorflow as tf
from softlearning.environments.utils import get_environment_from_params
from softlearning.algorithms.utils import get_algorithm_from_variant
from softlearning.policies.utils import get_policy_from_variant, get_policy
from softlearning.replay_pools.utils import get_replay_pool_from_variant
from softlearning.samplers.utils import get_sampler_from_variant
from softlearning.value_functions.utils import get_Q_function_from_variant
from softlearning.misc.utils import set_seed, initialize_tf_variables
import os
import static
import time
class ExperimentRunner:
def __init__(self, variant):
# set_seed(variant['run_params']['seed'])
# self.experiment_id = variant['algorithm_params']['exp_name']
# self.local_dir = os.path.join(variant['algorithm_params']['log_dir'], variant['algorithm_params']['domain'])
self.variant = variant
session = tf.Session()
tf.keras.backend.set_session(session)
self._session = tf.keras.backend.get_session()
self.train_generator = None
def build(self):
environment_params = self.variant['environment_params']
training_environment = self.training_environment = (get_environment_from_params(environment_params['training']))
evaluation_environment = self.evaluation_environment = (
get_environment_from_params(environment_params['evaluation'])
if 'evaluation' in environment_params
else training_environment)
replay_pool = self.replay_pool = (get_replay_pool_from_variant(self.variant, training_environment))
sampler = self.sampler = get_sampler_from_variant(self.variant)
Qs = self.Qs = get_Q_function_from_variant(self.variant, training_environment)
policy = self.policy = get_policy_from_variant(self.variant, training_environment, Qs)
initial_exploration_policy = self.initial_exploration_policy = (get_policy('UniformPolicy', training_environment))
#### get termination function
domain = environment_params['training']['domain']
static_fns = static[domain.lower()]
####
log_path = './log/%s' % (self.variant['algorithm_params']['domain'])
if(not os.path.exists(log_path)):
os.makedirs(log_path)
self.algorithm = get_algorithm_from_variant(
variant=self.variant,
training_environment=training_environment,
evaluation_environment=evaluation_environment,
policy=policy,
initial_exploration_policy=initial_exploration_policy,
Qs=Qs,
pool=replay_pool,
static_fns=static_fns,
sampler=sampler,
session=self._session,
log_file='./log/%s/%d.log' % (self.variant['algorithm_params']['domain'], time.time()))
initialize_tf_variables(self._session, only_uninitialized=True)
def train(self):
self.build()
self.algorithm.train()