-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrain_incremental.py
237 lines (188 loc) · 10.2 KB
/
train_incremental.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from __future__ import division
from __future__ import print_function
import json
import os
import time
from datetime import datetime
import logging
import scipy
from eval.link_prediction import evaluate_classifier, write_to_csv
from flags import *
from models.IncSAT.models import IncSAT
from utils.preprocess import *
from utils.utilities import *
from utils.incremental_minibatch import *
np.random.seed(123)
tf.set_random_seed(123)
flags = tf.app.flags
FLAGS = flags.FLAGS
# Assumes as input -> proper base model and model name to get the folder to load the flags from parser.
output_dir = "./logs/{}_{}/".format(FLAGS.base_model, FLAGS.model)
config_file = output_dir + "flags_{}.json".format(FLAGS.dataset)
with open(config_file, 'r') as f:
config = json.load(f)
for name, value in config.items():
if name in FLAGS.__flags:
FLAGS.__flags[name].value = value
print("Updated flag params", map(lambda x: (x[0], x[1].value), FLAGS.__flags.items()))
LOG_DIR = output_dir + FLAGS.log_dir
SAVE_DIR = output_dir + FLAGS.save_dir
CSV_DIR = output_dir + FLAGS.csv_dir
MODEL_DIR = output_dir + FLAGS.model_dir
if not os.path.isdir(LOG_DIR):
os.mkdir(LOG_DIR)
if not os.path.isdir(SAVE_DIR):
os.mkdir(SAVE_DIR)
if not os.path.isdir(CSV_DIR):
os.mkdir(CSV_DIR)
if not os.path.isdir(MODEL_DIR):
os.mkdir(MODEL_DIR)
os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.GPU_ID)
datetime_str = datetime.now().strftime("%Y%m%d_%H%M%S")
today = datetime.today()
# Setup logging
log_file = LOG_DIR + '/%s_%s_%s_%s_%s.log' % (FLAGS.dataset.split("/")[0], str(today.year),
str(today.month), str(today.day), str(FLAGS.time_steps))
log_level = logging.INFO
logging.basicConfig(filename=log_file, level=log_level, format='%(asctime)s - %(levelname)s: %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logging.info(map(lambda flag: (flag[0], flag[1].value), FLAGS.__flags.items()))
# Create file name for result log csv from certain flag parameters.
output_file = CSV_DIR + '/%s_%s_%s_%s.csv' % (FLAGS.dataset.split("/")[0], str(today.year),
str(today.month), str(today.day))
# Adj matrix at time t -> Should include nodes at (t+1) too, so that embeddings can be learnt.
# For baselines, the full matrix should be provided -- with all nodes till say - (t+1).
num_time_steps = FLAGS.time_steps
graphs, adjs = load_graphs(FLAGS.dataset)
if FLAGS.featureless:
feats = [scipy.sparse.identity(adjs[num_time_steps - 1].shape[0]).tocsr()[range(0, x.shape[0]), :] for x in adjs if
x.shape[0] <= adjs[num_time_steps - 1].shape[0]]
else:
feats = load_feats(FLAGS.dataset)
num_time_steps = FLAGS.time_steps
context_pairs = get_context_pairs_incremental(graphs[num_time_steps - 2])
train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false = \
get_evaluation_data(adjs, num_time_steps, FLAGS.dataset)
print("# train: {}, # val: {}, # test: {}".format(len(train_edges), len(val_edges), len(test_edges)))
logging.info("# train: {}, # val: {}, # test: {}".format(len(train_edges), len(val_edges), len(test_edges)))
num_time_steps = FLAGS.time_steps # NOTE: minimum value of num_time_steps is 2
assert num_time_steps < len(adjs) + 1 # So that, (t+1) can be predicted.
# Construct training data - create pairs only for the last time step => idx = time_steps - 2.
# Create the adj_train so that it includes nodes from (t+1) but only edges from t.
new_G = nx.MultiGraph()
new_G.add_nodes_from(graphs[num_time_steps - 1].nodes(data=True))
for e in graphs[num_time_steps - 2].edges():
new_G.add_edge(e[0], e[1])
graphs[num_time_steps - 1] = new_G
adjs[num_time_steps - 1] = nx.adjacency_matrix(new_G)
graph_train = graphs[num_time_steps - 2]
adj_train = nx.adjacency_matrix(graph_train)
adj_train = normalize_graph_gcn(adj_train)
num_features = feats[0].shape[1]
feat_train = preprocess_features(feats[num_time_steps - 2])[1]
num_features_nonzero = feat_train[1].shape[0]
def construct_placeholders():
# Define placeholders
placeholders = {
'node_1': tf.placeholder(tf.int32, shape=(None,), name="node_1"), # [None,1] for each time step.
'node_2': tf.placeholder(tf.int32, shape=(None,), name="node_2"), # [None,1] for each time step.
'batch_nodes': tf.placeholder(tf.int32, shape=(None,), name="batch_nodes"), # [None,1]
'prev_hidden_embeds': [tf.placeholder(tf.float32, shape=(1, None, None)) for t in range(0, num_time_steps - 2)],
'feature': tf.sparse_placeholder(tf.float32, shape=(None, num_features), name="feat"),
'adj': tf.sparse_placeholder(tf.float32, shape=(None, None), name="adj"),
'spatial_drop': tf.placeholder(dtype=tf.float32, shape=(), name='attn_drop'),
'temporal_drop': tf.placeholder(dtype=tf.float32, shape=(), name='ffd_drop')
}
return placeholders
prev_hidden_embeds = []
if num_time_steps > 2: # in case of 2, nothing to be done.
# Embed - saving and loading follow same convention as eval files.
try:
print("Trying to load from file with path -> ",
"{}/{}_{}_hidden_embeds.npz".format(MODEL_DIR, FLAGS.dataset, str(num_time_steps - 3)))
prev_hidden_embeds = \
np.load("{}/{}_{}_hidden_embeds.npz".format(MODEL_DIR, FLAGS.dataset, str(num_time_steps - 3)),
encoding='bytes')['data']
except IOError:
raise ValueError("Cannot load previous step(s) hidden layer embeddings")
print("Initializing session")
# Initialize session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
placeholders = construct_placeholders()
minibatchIterator = IncrementalNodeMinibatchIterator(graph_train, feat_train, adj_train, prev_hidden_embeds,
placeholders, batch_size=FLAGS.batch_size,
context_pairs=context_pairs)
model = IncSAT(placeholders, num_features, num_features_nonzero, minibatchIterator.degs)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
# Result accumulators.
epochs_test_result = defaultdict(lambda: [])
epochs_val_result = defaultdict(lambda: [])
epochs_embeddings = []
epochs_attn_wts_means = []
epochs_attn_wts_vars = []
for epoch in range(FLAGS.epochs):
minibatchIterator.shuffle()
epoch_loss = 0.0
it = 0
print('Epoch: %04d' % (epoch + 1))
while not minibatchIterator.end():
# Construct feed dictionary
feed_dict = minibatchIterator.next_minibatch_feed_dict()
feed_dict.update({placeholders['spatial_drop']: FLAGS.spatial_drop})
feed_dict.update({placeholders['temporal_drop']: FLAGS.temporal_drop})
t = time.time()
# Training step
_, train_cost, current_cost, reg_cost = sess.run([model.opt_op, model.loss, model.graph_loss, model.reg_loss],
feed_dict=feed_dict)
# Print results
logging.info("Mini batch Iter: {} train_loss= {:.5f}".format(it, train_cost))
logging.info("Mini batch Iter: {} current_loss= {:.5f}".format(it, current_cost))
logging.info("Mini batch Iter: {} reg_loss= {:.5f}".format(it, reg_cost))
epoch_loss += train_cost
it += 1
if epoch % FLAGS.test_freq == 0:
minibatchIterator.test_reset()
feed_dict.update({placeholders['spatial_drop']: 0.0})
feed_dict.update({placeholders['temporal_drop']: 0.0})
emb = sess.run(model.final_output_embeddings, feed_dict=feed_dict)[:, FLAGS.time_steps - 2, :]
emb = np.array(emb)
val_results, test_results, _, _ = evaluate_classifier(train_edges, train_edges_false, val_edges,
val_edges_false, test_edges, test_edges_false, emb, emb)
epoch_auc_val = val_results["HAD"][1]
epoch_auc_test = test_results["HAD"][1]
if (epoch == 0) or (epoch > 0 and epoch_auc_val >= max(epochs_val_result["HAD"])):
save_path = MODEL_DIR + "/" + "model_{}_{}.ckpt".format(FLAGS.dataset, FLAGS.time_steps - 2)
saver.save(sess, save_path)
print("Saving model at epoch {}".format(epoch))
logging.info("Saving model at epoch {}".format(epoch))
hidden_embeds = sess.run(model.hidden_embeds, feed_dict=feed_dict)
np.savez("{}/{}_{}_hidden_embeds.npz".format(MODEL_DIR, FLAGS.dataset, str(num_time_steps - 2)),
data=hidden_embeds)
print("Epoch {}, Val AUC {}".format(epoch, epoch_auc_val))
print("Epoch {}, Test AUC {}".format(epoch, epoch_auc_test))
logging.info("Val results at epoch {}: Measure ({}) AUC: {}".format(epoch, "HAD", epoch_auc_val))
logging.info("Test results at epoch {}: Measure ({}) AUC: {}".format(epoch, "HAD", epoch_auc_test))
epochs_test_result["HAD"].append(epoch_auc_test)
epochs_val_result["HAD"].append(epoch_auc_val)
epochs_embeddings.append(emb)
epoch_loss /= it
print("Mean Loss at epoch {} : {}".format(epoch, epoch_loss))
# Result log for link prediction.
best_epoch = epochs_val_result["HAD"].index(max(epochs_val_result["HAD"], key=lambda feat: feat[0]))
print("Best epoch ", best_epoch)
logging.info("Best epoch {}".format(best_epoch))
val_results, test_results, _, _ = evaluate_classifier(graphs[FLAGS.time_steps - 1], train_edges, train_edges_false,
val_edges, val_edges_false, test_edges, test_edges_false,
epochs_embeddings[best_epoch], epochs_embeddings[best_epoch])
print("Best epoch val results {}\n".format(val_results))
print("Best epoch test results {}\n".format(test_results))
logging.info("Best epoch val results {}\n".format(val_results))
logging.info("Best epoch test results {}\n".format(test_results))
write_to_csv(val_results, output_file, FLAGS.model, FLAGS.dataset, num_time_steps, mod='val')
write_to_csv(test_results, output_file, FLAGS.model, FLAGS.dataset, num_time_steps, mod='test')
# Save final embeddings in the save directory.
emb = epochs_embeddings[best_epoch]
np.savez(SAVE_DIR + '/{}_embs_{}_{}.npz'.format(FLAGS.model, FLAGS.dataset, FLAGS.time_steps - 2), data=emb)