-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathdemo_se_2_3.cpp
460 lines (377 loc) · 16.9 KB
/
demo_se_2_3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/**
* \file demo_se_2_3.cpp
*
* Created on: Feb 5, 2021
* \author: artivis
*
* ---------------------------------------------------------
* This file is:
* (c) 2021 artivis
*
* adapted from the file se_2_3_localization.cpp in manif:
* (c) 2020 Prashanth Ramadoss @ DIC-IIT, Genova, Italy
*
* This file is part of `kalmanif`, a C++ template-only library
* for Kalman filtering on Lie groups targeted at estimation for robotics.
* kalmanif is:
* (c) 2015 mherb
* (c) 2021 artivis
* ---------------------------------------------------------
*
* ---------------------------------------------------------
* Demonstration example:
*
* 3D Robot localization and linear velocity estimation
* based on strap-down IMU model and fixed beacons.
*
* ---------------------------------------------------------
*
* We consider a robot in 3D space surrounded by a small
* number of punctual landmarks or _beacons_.
* The robot is assumed to be mounted with an IMU whose
* measurements are fed as exogeneous inputs to the system.
* The robot is able to measure the location
* of the beacons w.r.t its own reference frame.
* We assume in this example that the IMU frame coincides with the robot frame.
*
* The robot extended pose X is in SE_2(3) and the beacon positions b_k in R^3,
*
* X = | R p v| // position, orientation and linear velocity
* | 1 |
* | 1|
*
* b_k = (bx_k, by_k, bz_k) // lmk coordinates in world frame
*
* alpha_k = (alphax_k, alphay_k, alphaz_k) // linear accelerometer measurements in IMU frame
*
* omega_k = (omegax_k, omegay_k, omegaz_k) // gyroscope measurements in IMU frame
*
* g = (0, 0, -9.80665) // acceleration due to gravity in world frame
*
* Consider robot coordinate frame B and world coordinate frame A.
* - p is the position of the origin of the robot frame B with respect to the world frame A
* - R is the orientation of the robot frame B with respect to the world frame A
* - v is the velocity of the robot frame with respect to the world frame,
* expressed in a frame whose origin coincides with the robot frame, oriented similar to the world frame
* (it is equivalent to p_dot in continuous time. This is usually called mixed-frame representation
* and is denoted as (B[A] v_AB), where B[A] is the mixed frame as described above.
* For reference, please see "Multibody Dynamics Notation" by Silvio Traversaro and Alessandro Saccon.
* Link: https://research.tue.nl/en/publications/multibody-dynamics-notation-version-2)
* - a is the frame acceleration in mixed-representation (equivalent to p_doubledot in continuous time).
* - omega_b as the angular velocity of the robot expressed in the robot frame
*
* The kinematic equations (1) can be written as,
* p <-- p + v dt + 0.5 a dt^2
* R <-- R Exp_SO3(omega_b)
* v <-- v + a dt
*
* However, we would like to express the kinematics equations in the form,
* X <-- X * Exp(u)
* where, X \in SE_2(3), u \in R^9 and u_hat \in se_2(3)
* Note that here input vector u is expressed in the local frame (robot frame).
* This can be seen as a motion integration on a manifold defined by the group SE_2(3).
*
* The exponential mapping of SE_2(3) is defined as,
* for u = [u_p, u_w, u_v]
* Exp(u) = | Exp_SO3(u_w) JlSO3(u_w) u_p JlSO3(u_w) u_v |
* | 0 0 0 1 0 |
* | 0 0 0 0 1 |
* where, JlSO3 is the left Jacobian of the SO(3) group.
*
* Please see the Appendix C of the paper "A micro Lie theory for state estimation in robotics",
* for the definition of the left Jacobian of SO(3).
* Please see the Appendix D of the paper, for the definition of Exp map for SE(3).
* The Exp map of SE_2(3) is a simple extension from the Exp map of SE(3).
* Also, please refer to Example 7 of the paper to understand when and how the left Jacobian of SO(3)
* appears in the definitions of Exp maps. The Example 7 illustrates the scenario for SE(3).
* We use a direct extension here for SE_2(3).
* One can arrive to such a definition by following the convergent Taylor's series expansion
* for the matrix exponential of the Lie algebra element (Equation 16 of the paper).
*
* As a result of X <-- X * Exp(u), we get (2)
* p <-- p + R JlSO3(u_w) u_p
* R <-- R Exp_SO3(u_w)
* v <-- v + R JlSO3(u_w) u_v
*
* It is important to notice the subtle difference between (1) and (2) here,
* which is specifically the influence of the left Jacobian of SO(3) in (2).
* The approach in (1) considers the motion integration is done by defining
* the exponential map in R3xSO(3)xR3 instead of SE_2(3),
* in the sense explored in Example 7 of the Micro Lie theory paper. It must be noted that
* as dt tends to 0, both sets of equations (1) and (2) tend to be the same, since JlSO3 tends to identity.
*
* Since, (2) exploits the algebra of the SE_2(3) group properly,
* we would like to draw a relationship between the sets of equations (2)
* and the IMU measurements which will constitute the exogeneous input vector u \in se_2(3).
*
* Considering R.T as the transpose of R, the IMU measurements are modeled as,
* - linear accelerometer measurements alpha = R.T (a - g) + w_acc
* - gyroscope measurements omega = omega_b + w_omega
* Note that the IMU measurements are expressed in the IMU frame (coincides with the robot frame - assumption).
* The IMU measurements are corrupted by noise,
* - w_omega is the additive white noise affecting the gyroscope measurements
* - w_acc is the additive white noise affecting the linear accelerometer measurements
* It must be noted that we do not consider IMU biases in the IMU measurement model in this example.
*
* Taking into account all of the above considerations, the exogenous input vector u (3) becomes,
* u = (u_p, u_w, u_v) where,
* u_w = omega dt
* u_p = (R.T v dt + 0.5 dt^2 (alpha + R.T g)
* u_v = (alpha + R.T g) dt
*
* This choice of input vector allows us to directly use measurements from the IMU
* for an unified motion integration involving position, orientation and linear velocity of the robot using SE_2(3).
* Equations (2) and (3) lead us to the following evolution equations,
*
* p <-- p + JlSO3 R.T v dt + 0.5 JlSO3 (alpha + R.T g) dt^2
* R <-- R Exp_SO3(omega dt)
* v <-- v + JlSO3 (alpha + R.T g) dt
*
* The system propagation noise covariance matrix becomes,
* U = diagonal(0, 0, 0, sigma_omegax^2, sigma_omegay^2, sigma_omegaz^2, sigma_accx^2, sigma_accy^2, sigma_accz^2).
*
* At the arrival of a exogeneous input u, the robot pose is updated
* with X <-- X * Exp(u) = X + u.
*
* Landmark measurements are of the range and bearing type,
* though they are put in Cartesian form for simplicity.
* Their noise n is zero mean Gaussian, and is specified
* with a covariances matrix R.
* We notice that the SE_2(3) action is the same as a
* rigid motion action of SE(3).
* This is the action of X \in SE_2(3) on a 3-d point b \in R^3 defined as,
* X b = R b + p
*
* Thus, the landmark measurements can be expressed as a group action on 3d points,
* y = h(X,b) = X^-1 * b
*
* y_k = (brx_k, bry_k, brz_k) // lmk coordinates in robot frame
*
* We consider the beacons b_k situated at known positions.
* We define the extended pose to estimate as X in SE_2(3).
* The estimation error dx and its covariance P are expressed
* in the tangent space at X.
*
* All these variables are summarized again as follows
*
* X : robot's extended pose, SE_2(3)
* u : robot control input, u = u(X, y_imu) \in se_2(3) with X as state and y_imu = [alpha, omega] as IMU readings, see Eq. (3)
* U : control perturbation covariance
* b_k : k-th landmark position, R^3
* y : Cartesian landmark measurement in robot frame, R^3
* R : covariance of the measurement noise
*
* The motion and measurement models are
*
* X_(t+1) = f(X_t, u) = X_t * Exp ( u ) // motion equation
* y_k = h(X, b_k) = X^-1 * b_k // measurement equation
*
* The algorithm below comprises first a simulator to
* produce measurements, then uses these measurements
* to estimate the state, using a Lie-based error-state Kalman filter.
*
* This file has plain code with only one main() function.
* There are no function calls other than those involving `manif`.
*
* Printing simulated state and estimated state together
* with an unfiltered state (i.e. without Kalman corrections)
* allows for evaluating the quality of the estimates.
*/
#include <kalmanif/kalmanif.h>
#include <kalmanif/system_models/simple_imu_system_model.h>
#include "utils/rand.h"
#include "utils/plots.h"
#include "utils/utils.h"
#include <vector>
using namespace kalmanif;
using namespace manif;
using State = SE_2_3d;
using StateCovariance = Covariance<State>;
using SystemModel = SimpleImuSystemModel<State::Scalar>;
using Control = SystemModel::Control;
using MeasurementModel = Landmark3DMeasurementModel<State>;
using Landmark = MeasurementModel::Landmark;
using Measurement = MeasurementModel::Measurement;
using Array6d = Eigen::Array<double, 6, 1>;
using Array9d = Eigen::Array<double, 9, 1>;
using Vector3d = Eigen::Matrix<double, 3, 1>;
using Vector6d = Eigen::Matrix<double, 6, 1>;
using Vector9d = Eigen::Matrix<double, 9, 1>;
using Matrix3d = Eigen::Matrix<double, 3, 3>;
using Matrix6d = Eigen::Matrix<double, 6, 6>;
// Filters
using EKF = ExtendedKalmanFilter<State>;
using SEKF = SquareRootExtendedKalmanFilter<State>;
using IEKF = InvariantExtendedKalmanFilter<State>;
using UKFM = UnscentedKalmanFilterManifolds<State>;
// Smoothers
using ERTS = RauchTungStriebelSmoother<EKF>;
using SERTS = RauchTungStriebelSmoother<SEKF>;
using IERTS = RauchTungStriebelSmoother<IEKF>;
using URTSM = RauchTungStriebelSmoother<UKFM>;
int main (int argc, char* argv[]) {
KALMANIF_DEMO_PROCESS_INPUT(argc, argv);
KALMANIF_DEMO_PRETTY_PRINT();
// START CONFIGURATION
constexpr double eot = 60; // s
constexpr double dt = 0.01; // s
constexpr int landmark_freq = 50; // Hz
(void)landmark_freq;
// acceleration due to gravity in world frame
Vector3d g;
g << 0, 0, -9.80665;
State X_simulation = State::Identity(),
X_unfiltered = State::Identity(); // propagation only, for comparison purposes
// IMU measurements in IMU frame
Vector3d alpha, alpha_const, omega, alpha_prev, omega_prev;
alpha_const << 0.1, 0.01, 0.1; // constant acceleration in IMU frame without gravity compensation
omega << 0.01, 0.1, 0; // constant angular velocity about x- and y-direction in IMU frame
// Previous IMU measurements in IMU frame initialized to values expected when stationary
alpha_prev = alpha = alpha_const - (X_simulation.rotation()).transpose() * g;
omega_prev << 0, 0, 0;
// Define a control vector and its noise and covariance
Control u_simu, u_est, u_unfilt;
Vector6d u_nom, u_noisy, u_noise;
Array6d u_sigmas;
Matrix6d U;
u_sigmas << 0.01, 0.01, 0.01, 0.01, 0.01, 0.01;
U = (u_sigmas * u_sigmas).matrix().asDiagonal();
// Define the beacon's measurements
Eigen::Vector3d y, y_noise;
Eigen::Array3d y_sigmas;
Eigen::Matrix3d R;
y_sigmas << 0.01, 0.01, 0.01;
R = (y_sigmas * y_sigmas).matrix().asDiagonal();
std::vector<MeasurementModel> measurement_models = {
MeasurementModel(Landmark(2.0, 0.0, 0.0), R),
MeasurementModel(Landmark(3.0, -1.0, -1.0), R),
MeasurementModel(Landmark(2.0, -1.0, 1.0), R),
MeasurementModel(Landmark(2.0, 1.0, 1.0), R),
MeasurementModel(Landmark(2.0, 1.0, -1.0), R)
};
std::vector<Measurement> measurements(measurement_models.size());
SystemModel system_model;
system_model.setCovariance(U);
StateCovariance state_cov_init = StateCovariance::Zero();
state_cov_init.block<3, 3>(0, 0) = 0.001 * Matrix3d::Identity();
state_cov_init.block<3, 3>(3, 3) = 0.01 * Matrix3d::Identity();
state_cov_init.block<3, 3>(6, 6) = 0.001 * Matrix3d::Identity();
Vector9d n = randn<Array9d>();
Vector9d X_init_coeffs = state_cov_init.cwiseSqrt() * n;
State X_init(
X_init_coeffs(0), X_init_coeffs(1), X_init_coeffs(2),
X_init_coeffs(3), X_init_coeffs(4), X_init_coeffs(5),
X_init_coeffs(6), X_init_coeffs(7), X_init_coeffs(8)
);
EKF ekf;
ekf.setState(X_init);
ekf.setCovariance(state_cov_init);
SEKF sekf(X_init, state_cov_init);
IEKF iekf(X_init, state_cov_init);
UKFM ukfm(X_init, state_cov_init);
ERTS erts(X_init, state_cov_init);
SERTS serts(X_init, state_cov_init);
IERTS ierts(X_init, state_cov_init);
URTSM urtsm(X_init, state_cov_init);
// Store some data for plots
DemoDataCollector<State> collector;
collector.reserve(
eot/dt, "UNFI", "EKF", "SEKF", "IEKF", "UKFM" , "ERTS", "SERTS", "IERTS", "URTSM"
);
// Make 10 steps. Measure up to three landmarks each time.
for (double t = 0; t < eot; t += dt) {
//// I. Simulation
/// input vector
u_nom << alpha_prev, omega_prev;
/// simulate noise
u_noise = randn(u_sigmas); // control noise
u_noisy = u_nom + u_noise; // noisy control
u_simu = u_nom;
u_est = u_noisy;
u_unfilt = u_noisy;
/// first we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_simulation = system_model(X_simulation, u_simu, dt);
/// update expected IMU measurements
alpha = alpha_const - X_simulation.rotation().transpose() * g; // update expected IMU measurement after moving
/// then we measure all landmarks - - - - - - - - - - - - - - - - - - - -
for (std::size_t i = 0; i < measurement_models.size(); ++i) {
auto measurement_model = measurement_models[i];
y = measurement_model(X_simulation); // landmark measurement, before adding noise
/// simulate noise
y_noise = randn(y_sigmas); // measurement noise
y = y + y_noise; // landmark measurement, noisy
measurements[i] = y; // store for the estimator just below
}
//// II. Estimation
/// First we move
ekf.propagate(system_model, u_est, dt);
sekf.propagate(system_model, u_est, dt);
iekf.propagate(system_model, u_est, dt);
ukfm.propagate(system_model, u_est, dt);
erts.propagate(system_model, u_est, dt);
serts.propagate(system_model, u_est, dt);
ierts.propagate(system_model, u_est, dt);
urtsm.propagate(system_model, u_est, dt);
X_unfiltered = system_model(X_unfiltered, u_unfilt, dt);
/// Then we correct using the measurements of each lmk
// if (int(t*100) % int(100./landmark_freq) == 0) {
for (std::size_t i = 0; i < measurement_models.size(); ++i) {
// landmark
auto measurement_model = measurement_models[i];
// measurement
y = measurements[i];
// filter update
ekf.update(measurement_model, y);
sekf.update(measurement_model, y);
iekf.update(measurement_model, y);
ukfm.update(measurement_model, y);
erts.update(measurement_model, y);
serts.update(measurement_model, y);
ierts.update(measurement_model, y);
urtsm.update(measurement_model, y);
}
// }
alpha_prev = alpha;
omega_prev = omega;
//// III. Results
collector.collect(X_simulation, t);
collector.collect("UNFI", X_unfiltered, StateCovariance::Zero(), t);
collector.collect("EKF", ekf.getState(), ekf.getCovariance(), t);
collector.collect("SEKF", sekf.getState(), sekf.getCovariance(), t);
collector.collect("IEKF", iekf.getState(), iekf.getCovariance(), t);
collector.collect("UKFM", ukfm.getState(), ukfm.getCovariance(), t);
}
// END OF TEMPORAL LOOP, forward pass
// Batch backward pass - smoothing
{
erts.smooth();
const auto& Xs_erts = erts.getStates();
const auto& Ps_erts = erts.getCovariances();
serts.smooth();
const auto& Xs_serts = serts.getStates();
const auto& Ps_serts = serts.getCovariances();
ierts.smooth();
const auto& Xs_ierts = ierts.getStates();
const auto& Ps_ierts = ierts.getCovariances();
urtsm.smooth();
const auto& Xs_urtsm = urtsm.getStates();
const auto& Ps_urtsm = urtsm.getCovariances();
double t=0;
for (std::size_t i=0; i<Xs_erts.size(); ++i, t+=dt) {
collector.collect("ERTS", Xs_erts[i], Ps_erts[i], t);
collector.collect("SERTS", Xs_serts[i], Ps_serts[i], t);
collector.collect("IERTS", Xs_ierts[i], Ps_ierts[i], t);
collector.collect("URTSM", Xs_urtsm[i], Ps_urtsm[i], t);
}
}
// print the trajectory
if (!quiet) {
KALMANIF_DEMO_PRINT_TRAJECTORY(collector);
}
// Generate some metrics and print them
DemoDataProcessor<State>().process(collector).print();
// Actually plots only if PLOT_EXAMPLES=ON
DemoTrajPlotter<State>::plot(collector, filename, plot_trajectory);
DemoDataPlotter<State>::plot(collector, filename, plot_error);
return EXIT_SUCCESS;
}