-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun.py
executable file
·177 lines (145 loc) · 5.45 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python3
"""usage: ./run.py [GPU_ID]"""
import sys
if len(sys.argv) > 1:
GPU_ID = int(sys.argv[1])
print("Run on GPU {}".format(GPU_ID))
else:
GPU_ID = -1
print("Run on CPU")
#MODEL URL
MODEL_URL = "https://drive.switch.ch/index.php/s/TMNxxLWYfk61Jc5/download"
#MODEL SHA256
MODEL_SHA = "b0cf389d88b38494404693694e35dd4a2c316efad8cf948f59ad4e8528e00788"
# set correct environment variables
import os
os.environ[' CUDA_DEVICE_ORDER'] = "PCI_BUS_ID"
if GPU_ID == -1:
os.environ['CUDA_VISIBLE_DEVICES'] = ""
else:
os.environ['CUDA_VISIBLE_DEVICES'] ="{}".format(GPU_ID)
# add source to the Python path
import glob
import time
import urllib.request
import zipfile
import subprocess
import tensorflow as tf
import numpy as np
module_path = os.path.abspath(os.path.join('./src'))
if module_path not in sys.path:
sys.path.append(module_path)
import images
from tf_aerial_images import Options
from tf_aerial_images import ConvolutionalModel
from constants import IMG_PATCH_SIZE, FOREGROUND_THRESHOLD
def get_model(path):
""" makes sure model is on disk """
path = os.path.abspath(os.path.join(path))
if not os.path.exists(path):
os.makedirs(path)
modelpath = os.path.abspath(os.path.join(path, 'model.zip'))
if not os.path.exists(modelpath):
print("Download model:")
print("===============")
opener = urllib.request.build_opener()
opener.addheaders = [('User-Agent', 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1941.0 Safari/537.36')]
urllib.request.install_opener(opener)
urllib.request.urlretrieve(MODEL_URL, modelpath, report_download_progress)
print()
if len(glob.glob(path + "model-epoch-*")) < 3:
print("Unzip model...")
zip_ = zipfile.ZipFile(modelpath, 'r')
zip_.extractall(path)
zip_.close()
def verify_model():
'''
checks wheter the SHA for the downloaded model is valid or not
:return: model SHA validity
'''
sha_file = 'model/model_sha.txt'
try:
return_code = subprocess.call("sha256sum model/model.zip > model/model_sha.txt", shell=True)
if return_code != 0:
#SHA256 Command failed
return False
if os.path.isfile('model/model_sha.txt'):
# SHA FILE GENERATED
with open(sha_file, 'r') as f:
lines = f.readlines()
if len(lines) > 0:
sha = lines[0].split(" ")[0]
print("Computed SHA: {}".format(sha))
if sha != MODEL_SHA:
print("SHA Verification for Model failed")
return False
else:
print("SHA Verficiation for Model successful")
return True
else:
#SHA FILE not existent
return False
except:
print("Unexpected error during SHA verification! Please verify manually")
return False
def report_download_progress(count, block_size, total_size):
""" callback to display download progress """
global start_time
if count == 0:
start_time = time.time()
return
duration = np.maximum(time.time() - start_time, 1)
progress_size = int(count * block_size)
speed = int(progress_size / (1024 * duration))
percent = int(count * block_size * 100 / total_size)
sys.stdout.write("\r...{}%, {:.1f} MB, {} KB/s, {:.0f} seconds passed".format(
percent, progress_size / (1024 * 1024), speed, duration))
sys.stdout.flush()
# Set options
opts = Options()
opts.num_epoch = 0
opts.batch_size = 1
opts.pred_batch_size = 1
opts.patch_size = 388
opts.gpu = GPU_ID
opts.stride = 110
opts.num_layers = 6
opts.restore_model = True
opts.ensemble_prediction = True
opts.dilated_layers = True
# Path to final trained model
opts.model_path = "./model/model-epoch-011.chkpt"
opts.eval_data_dir = "./data/test/"
opts.save_path = "./prediction/"
# Make sure model is on disk
get_model(os.path.join(opts.save_path, "../model/"))
#Verify Model
is_valid = verify_model()
if not is_valid:
print("Model verification failed! Probably because sha256sum is not installed on your machine or the download failed"
" However, we do not abort... Please verify it manually!")
else:
print("Automatic Model verification successful.")
# Run Prediction
if opts.gpu == -1:
config = tf.ConfigProto()
else:
config = tf.ConfigProto(device_count={'GPU': opts.num_gpu}, allow_soft_placement=True)
with tf.Graph().as_default(), tf.Session(config=config) as session:
device = '/device:CPU:0' if opts.gpu == -1 else '/device:GPU:{}'.format(opts.gpu)
print("Running on device {}".format(device))
with tf.device(device):
model = ConvolutionalModel(opts, session)
# Restore model
model.restore(file=opts.model_path)
print("Running inference on eval data {}".format(opts.eval_data_dir))
eval_images = images.load(opts.eval_data_dir)
start = time.time()
masks = model.predict_batchwise(eval_images, opts.pred_batch_size)
stop = time.time()
print("Prediction time:{} mins".format((stop - start)/60))
masks = images.quantize_mask(masks, patch_size=IMG_PATCH_SIZE, threshold=FOREGROUND_THRESHOLD)
overlays = images.overlays(eval_images, masks, fade=0.4)
save_dir = os.path.abspath(os.path.join(opts.save_path, model.experiment_name))
images.save_all(overlays, save_dir)
images.save_submission_csv(masks, save_dir, IMG_PATCH_SIZE)