Skip to content

Latest commit

 

History

History
103 lines (82 loc) · 2.75 KB

README.md

File metadata and controls

103 lines (82 loc) · 2.75 KB

cryptomath

Mathematical cryptography algorithms implemented in Python

Usage

Usage documentation will come later once the project is more complete, but for now, here's a basic overview:

Create a python script in the directory above this library and use import cryptomath to import the entire library. From here, any completed functions can be accessed by referencing the library and function name, such as gcd = cryptomath.GCD(123,943), or gcd, x, y = cryptomath.ExtendedEuclidean(123, 10007). To import only a specific module within the library, such as Factorization, you may use from cryptomath import Factorization. Then, the library will not need to be referenced, only the function names, such as fact = PrimeFactorization(1234). Similarly, you may import only one function of a module, which can be done with from cryptomath.Polynomials import JacobiSymbol.

Usable Functions

These are functions which have been finalized and can be effectively used:

Basic Algorithms/Functions
  • Euclidean(a, b), Alias: GCD(a, b)
  • ExtendedEuclidean(a, b)
  • ModularInv(a, n, prime (optional))
  • FastPower(a, e, n)
  • ChineseRemainderThm(a, m, b, n)
  • Totient(x)
Factorization
  • PrimeFactorization(n)
  • Factors(n, dup (optional))
  • PollardP_1(n, b (optional))
  • Pollard(n)
Generators
  • GenerateProbablePrime(length)
  • GeneratePrimes(n)
Polynomials
  • JacobiSymbol(a, n)
  • IsModSquare(a, n)
  • TonelliShanks(a, n)
  • ModSquareRoots(a, n)
Primality
  • EulerTest(a, n)
  • SolovayStrassenTest(n, tries (optional))
  • FermatTest(a, n)
  • MillerRabin(n, warnings (optional))
  • IsPrime(n)
  • IsSophieGermainPrime(n)
Primitive Roots
  • Order(a, n)
Misc
  • HammingWeight(x)
  • SquareFree(x)

Dev notes

Further algorithms to implement

Polynomials
  • Hensel's Lemma
  • Modular Quadratic Solver
Ciphers
  • Rabin Cipher
  • Affine Cipher
Discrete Logs
  • Pohlig-Hellman
  • Shanks Babystep-Giantstep
Generators
  • Primitive Roots
  • Sophie Germain Strong Primes
Cryptosystems
  • McEliece Public Key
  • El Gamal
  • RSA
  • Merkle-Hellman
  • Koblitz (elliptic Curves)
Factoring
  • Quadratic Sieve
  • Lenstra's Algorithm (elliptic curves)
Secret Sharing
  • Blakely (hyperplanes)
  • Shamir (points)
Zero-knowledge Protocols
  • Basic
  • Fiege-Fiat-Shamir
Elliptic Curves
  • Check if Point is on a Curve
  • Add Points
  • Point-Scalar Multiplication
  • Diffie-Hellman
  • RSA
  • El Gamal