-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathest_voc_train_masks.py
119 lines (97 loc) · 4.9 KB
/
est_voc_train_masks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import cores.utils.misc as misc
import cores.utils.voc_cmap as voc_cmap
import cores.config as config
import argparse
import os
import mxnet as mx
import numpy as np
from PIL import Image
import cPickle as pickle
from cores.data.InferenceDataProducer import InferenceDataProducer
def get_voc_mask(image_folder, output_folder, net_symbol, class_num, flist_path, epoch, model_prefix,
ctx, workspace, max_dim, rgb_mean, scale_list, multi_label_file=None, min_pixel=None,
sec_mask_folder=None):
misc.my_mkdir(output_folder)
cmap = voc_cmap.get_cmap()
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"]="0"
seg_net = net_symbol.create_infer(class_num, workspace)
arg_dict, aux_dict, _ = misc.load_checkpoint(model_prefix, epoch)
if multi_label_file is not None:
with open(multi_label_file, 'rb') as f:
data_dict = pickle.load(f)
mod = mx.mod.Module(seg_net, label_names=[], context=ctx)
mod.bind(data_shapes=[("data", (1, 3, max_dim, max_dim))],
for_training=False, grad_req="null")
initializer = mx.init.Normal()
initializer.set_verbosity(True)
mod.init_params(initializer=initializer, arg_params=arg_dict, aux_params=aux_dict, allow_missing=True)
data_producer = InferenceDataProducer(
im_root=image_folder,
mask_root="",
flist_path=flist_path,
rgb_mean=rgb_mean,
scale_list=scale_list)
nbatch = 0
while True:
data = data_producer.get_data()
if data is None:
break
im_list = data[0]
label = data[1].squeeze()
file_name = data[2]
final_scoremaps = mx.nd.zeros((class_num, label.shape[0], label.shape[1]))
for im in im_list:
mod.reshape(data_shapes=[("data", im.shape)])
mod.forward(mx.io.DataBatch(data=[mx.nd.array(im)]))
score = mx.nd.transpose(mod.get_outputs()[0].copyto(mx.cpu()), [0, 2, 3, 1])
score = mx.nd.reshape(score, (score.shape[1], score.shape[2], score.shape[3]))
up_score = mx.nd.transpose(mx.image.imresize(score, label.shape[1], label.shape[0], interp=1), [2, 0, 1])
final_scoremaps += up_score
final_scoremaps = final_scoremaps.asnumpy()
if multi_label_file is not None:
tmp_label = data_dict[file_name]
image_level_labels = np.zeros((class_num-1))
image_level_labels[tmp_label] = 1
image_level_labels = np.insert(image_level_labels, 0, 1)
image_level_labels = image_level_labels.reshape((class_num, 1, 1))
final_scoremaps *= image_level_labels
pred_label = final_scoremaps.argmax(0)
if sec_mask_folder is not None:
sec_mask = Image.open(os.path.join(config.CACHE_PATH, config.VOC_MASK_FOLDER_INITSEC, file_name+".png"))
sec_mask = np.array(sec_mask)
assert multi_label_file is not None
image_label = data_dict[file_name] + 1
fg_index = pred_label>0
for l in image_label:
if np.sum(pred_label==l) <=min_pixel:
pred_label[sec_mask==l] = l
inter_index = ((sec_mask==l) & fg_index)
pred_label[inter_index] = l
out_img = np.uint8(pred_label)
out_img = Image.fromarray(out_img)
out_img.putpalette(cmap)
out_img.save(os.path.join(output_folder, file_name+".png"))
nbatch += 1
if nbatch % 10 == 0:
print "processed %dth batch" % nbatch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Training parameters")
parser.add_argument("--gpu", default=0, type=int,
help="Device indices.")
parser.add_argument("--epoch", default=1, type=int,
help="epoch number of snapshot of the init model")
args = parser.parse_args()
ctx = mx.gpu(args.gpu)
model_name = "web_fcn_%s" % config.BASE_NET
exec ("import cores.symbols." + model_name + " as net_symbol")
image_folder=os.path.join(config.DATASET_PATH, config.VOC_TRAIN_IM_FOLDER)
output_folder=os.path.join(config.CACHE_PATH, config.FINAL_VOC_MASK_FOLDER)
model_prefix = os.path.join(config.SNAPSHOT_FOLDER, model_name)
multi_label_file = os.path.join(config.DATASET_PATH, config.VOC_TRAIN_MULTI_FILE)
sec_mask_folder = os.path.join(config.CACHE_PATH, config.VOC_MASK_FOLDER_INITSEC)
get_voc_mask(image_folder=image_folder, output_folder=output_folder, net_symbol=net_symbol,
class_num=config.CLASS_NUM, flist_path=os.path.join(config.DATASET_PATH, config.VOC_TRAIN_LIST),
epoch=args.epoch, model_prefix=model_prefix, ctx=ctx, workspace=config.WORKSPACE,
max_dim=config.MAX_INPUT_DIM, rgb_mean=config.MEAN_RGB,
scale_list=config.EVAL_SCALE_LIST, multi_label_file=multi_label_file,
min_pixel=config.MIN_PIXEL_TH, sec_mask_folder=sec_mask_folder)