-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinvert_models.sh
40 lines (34 loc) · 2.4 KB
/
invert_models.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/bin/bash
########### CIFAR10 ##################
#### DEQ #############################
for i in $(seq 1 100)
do
python main.py --config cifar10_ls_opt.yml --model DiffusionInversion --exp cifar10-orig-exp --image_folder cifar10-inverse-t1000-parallel --doc cifar10-orig --ls_opt --timesteps 1000 --ni --method default --lambda1 1 --lambda2 0 --lambda3 0 --seed $i --tau 0.1 --use_wandb --no_augmentation --pg_steps 1 --use_pretrained --skip_type quad
done
#### Baseline ########################
for i in $(seq 1 100)
do
python main.py --config cifar10_ls_opt_seq.yml --model DiffusionInversion --exp cifar10-orig-exp --image_folder cifar10-inverse-t1000-seq --doc cifar10-orig --ls_opt --timesteps 1000 --ni --method default --lambda1 1 --lambda2 0 --lambda3 0 --seed $i --use_wandb --no_augmentation --use_pretrained --skip_type quad
done
########### CelebA ###################
#### DEQ #############################
for seed in $(seq 1 100)
do
python main.py --config celeba_ls_opt.yml --model DiffusionInversion --exp celeba-orig --image_folder celeba-inverse-t20-parallel --doc celeba-orig-ddim --ls_opt --timesteps 20 --ni --method default --lambda1 1 --lambda2 0 --lambda3 0 --seed $seed --tau 0.1 --use_wandb --no_augmentation --pg_steps 1
done
#### Baseline ########################
for seed in $(seq 1 100)
do
python main.py --config celeba_ls_opt_seq.yml --model DiffusionInversion --exp celeba-orig --image_folder celeba-inverse-t20-seq --doc celeba-orig-ddim --ls_opt --timesteps 20 --ni --method default --lambda1 1 --lambda2 0 --lambda3 0 --seed $seed --use_wandb --no_augmentation
done
############ LSUN Bedroom ############# (Use similar command for LSUN Church)
#### DEQ ##############################
for seed in $(seq 1 100)
do
python main.py --config bedroom_ls_opt.yml --model DiffusionInversion --exp lsun_orig --image_folder lsun_bedroom_images --doc lsun_orig --ls_opt --timesteps 10 --ni --method default --lambda1 1 --lambda2 0 --lambda3 0 --seed $seed --tau 0.1 --no_augmentation --pg_steps 1 --use_pretrained --use_wandb
done
#### Baseline #########################
for seed in $(seq 1 100)
do
python main.py --config bedroom_ls_opt_seq.yml --model DiffusionInversion --exp lsun_orig --image_folder lsun_bedroom_images_t10 --doc lsun_orig --ls_opt --timesteps 10 --ni --method default --seed $seed --no_augmentation --use_pretrained --use_wandb
done