-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert-uff.py
58 lines (45 loc) · 2.24 KB
/
convert-uff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse
import os
import uff
import graphsurgeon as gs
import importlib
import tensorflow as tf
from pathlib import Path
from model import model_path
from google.protobuf import text_format
from object_detection.protos import pipeline_pb2
def convert():
args = parse_commandline_arguments()
config = importlib.import_module('config.{}'.format(args.model_name))
model = config.Model
a_model_path = model_path(args.model_name, pretrained=args.pretrained)
pipeline_path = os.path.join(a_model_path, 'pipeline.config')
graph_path = os.path.join(a_model_path, 'frozen_inference_graph.pb')
print('Converting to UFF:\n\t{}\n\t{}'.format(pipeline_path, graph_path))
pipeline = pipeline_pb2.TrainEvalPipelineConfig()
with tf.io.gfile.GFile(pipeline_path, "r") as f:
proto_str = f.read()
text_format.Merge(proto_str, pipeline, allow_unknown_field=True)
graph = gs.DynamicGraph(graph_path)
dynamic_graph = model.unsupported_nodes_to_plugin_nodes(graph,
pipeline.model.ssd.num_classes + 1)
output_filename = os.path.abspath(os.path.join(Path(graph_path).parent.parent,
args.model_name + '.uff'))
uff.from_tensorflow(dynamic_graph.as_graph_def(),
output_nodes=model.OUTPUT_NODES,
output_filename=output_filename,
text=args.text)
def parse_commandline_arguments():
parser = argparse.ArgumentParser(description='Converts certain trained TensorFlow models to UFF formaf.')
parser.add_argument("-m", "--model", dest="model_name", required=True,
help="Name of object detection model to convert")
parser.add_argument("-i", "--inference-graph", dest="pretrained",
action="store_false", default=True,
help="Use trained inference graph instead of pre-trained")
parser.add_argument("-t", "--text", dest="text",
action="store_true", default=False,
help="If set, the converter will also write out a human readable UFF file")
args = parser.parse_args()
return args
if __name__ == '__main__':
convert()