-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsyntactic-text-similarity.py
247 lines (213 loc) · 6.74 KB
/
syntactic-text-similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import pandas as pd
import numpy as np
import json
import matplotlib.pyplot as plt
import nltk
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
def extract_value_text(data):
"""
Description:
Extracts the values of each field of the json, but returns
only a unified string of the text_values after grouping.
Input Parameters
data: json data [contact or respond data]
Output Parameters
_txt_str: String
"""
_txt = []
_misc =[]
for i in range(len(data)):
for key, value in data[i].items():
if key == 'text_value':
_txt.append(value)
else:
_misc.append(value)
_txt_str=' '.join(_txt)
return _txt_str
def string_constractor(data, kind):
"""
Description:
Composes the unified strings into lists and gives
a tag according to the kind of data that red
Input Parameters
data: json data [contact or respond data]
kind: String
Output Parameters
text: List
tag: List
"""
text = []
tag = []
for i in range(len(data)):
text.append(extract_value_text(data[i]))
tag.append(kind + str(i))
return text , tag
def df_constructor(text_c, tag_c, text_r, tag_r):
"""
Description:
Composes a dataframe from lists
Input Parameters
text_c: List
tag_c: List
text_r: List
tag_r: List
Output Parameters
df: Dataframe
"""
text = []
tag = []
text = text_c + text_r
tag = tag_c + tag_r
df = pd.DataFrame({'text': text, 'tag': tag })
return df
def heatmap(df, mtx):
"""
Description:
Visualizes the cosine similarity between the inputs
Input Parameters
df: Dataframe
mtx: 2D Array
"""
x_labels = df['text'].tolist()
y_labels = df['text'].tolist()
fig, ax = plt.subplots()
im = ax.imshow(mtx)
ax.set_xticks(np.arange(len(x_labels)))
ax.set_yticks(np.arange(len(y_labels)))
ax.set_xticklabels(x_labels)
ax.set_yticklabels(y_labels)
plt.setp(ax.get_xticklabels(), rotation=45, ha='right', rotation_mode='anchor')
for i in range(len(y_labels)):
for j in range(len(x_labels)):
text = ax.text(j, i, '%.2f'%mtx[i, j], ha='center', va='center', color='w', fontsize=6)
plt.show()
def preprocess_text(doc):
"""
Description:
Preprocesses each document into a proper
format to to pass it on TfidfVectorizer
Input Parameters
doc: String
"""
tokeniser = RegexpTokenizer(r'\w+')
tokens = tokeniser.tokenize(doc)
lemmatiser = WordNetLemmatizer()
lemmas = [lemmatiser.lemmatize(token.lower(), pos='v') for token in tokens]
keywords= [lemma for lemma in lemmas if lemma not in stopwords.words('english')]
return keywords
def feature_matrix_tf_idf(df):
"""
Description:
Preprocess texts and Constracts a feature matrix
Input Parameters
df: Dataframe
Output Parameters
X_ftr: Compressed sparse row matrix
"""
corpus = df['text'].tolist()
vectoriser = TfidfVectorizer(analyzer=preprocess_text)
X_ftr = vectoriser.fit_transform(corpus)
return X_ftr
def pairwise_cosine_similarity(X_ftr):
"""
Description:
Measures the similarity between two non-zero
vectors of an inner product space
Input Parameters
X_ftr: Compressed sparse row matrix
Output Parameters
res: 2d Array
"""
pairwise_similarity = X_ftr * X_ftr.T
res = pairwise_similarity.toarray()
return res
def query_res(corr, df):
"""
Description:
Finds the index of the most similar document
Input Parameters
corr: 2d Array
df: Dataframe
Output Parameters
qdf: Dataframe
"""
corpus = df['text'].tolist()
np.fill_diagonal(corr, np.nan)
flt = df[df['tag'].str.contains('contact',regex = False)]
n = len(flt)
lst = []
for idx in range(len(flt)):
query_idx = corpus.index(flt['text'][idx])
result_idx = np.nanargmax(corr[query_idx])
score = corr.item(query_idx,result_idx)
lst.append([df['tag'][query_idx],df['tag'][result_idx],score ])
res = pd.DataFrame(lst, columns =['contact', 'response', 'score'])
qdf = res[res['response'].str.contains('respond ',regex = False)]
return qdf
if __name__ == '__main__':
try:
print(' - [ ? ] Loading test data')
with open('data.json') as json_file:
data = json.load(json_file)
contact =[]
respond = []
contact = data['contact']
respond = data['respond']
print(' [ V ] Successfully complete')
except Exception as e:
print(e)
print(' [ X ] Failed. Application exits...')
try:
print(' - [ ? ] Preparing the text_value into a uniform string')
text_c, tag_c = string_constractor(contact, 'contact ')
text_r, tag_r = string_constractor(respond, 'respond ')
print(' [ V ] Successfully complete')
print('')
except Exception as e:
print(e)
print(' [ X ] Failed. Application exits...')
try:
print(' - [ ? ] Constructing a dataframe')
df = df_constructor(text_c, tag_c, text_r, tag_r)
print(df)
print(' [ V ] Successfully complete')
print('')
except Exception as e:
print(e)
print(' [ X ] Failed. Application exits...')
try:
print(' - [ ? ] Creating a feature matrix of words\'s frequencies')
X_train = feature_matrix_tf_idf(df)
print(' [ V ] Successfully complete')
print('')
except Exception as e:
print(e)
print(' [ X ] Failed. Application exits...')
try:
print(' - [ ? ] Calculating the cosine similarity array')
corr = pairwise_cosine_similarity(X_train)
print(corr)
print(' [ V ] Successfully complete')
print('')
except Exception as e:
print(e)
print(' [ X ] Failed. Application exits...')
try:
print(' - [ ? ] Vissualizing the similarity array')
heatmap(df, corr)
print(' [ V ] Successfully complete')
print('')
except Exception as e:
print(e)
print(' [ X ] Failed. Application exits...')
try:
print(' - [ ? ] Matching the contact/respond segments with the max similarity')
print(query_res(corr, df))
print(' [ V ] Successfully complete')
print('')
except Exception as e:
print(e)
print(' [ X ] Failed. Application exits...')