-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
144 lines (140 loc) · 6.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
import math
from sklearn.metrics import PrecisionRecallDisplay, classification_report
from analysis import plotSegment, showConfidentlyIncorrects, permutationFeatureImportance
from data.roc import roc
from itertools import cycle
import model.utilities as mu
from train import train
if __name__ == "__main__":
showClassificationReport = True
showFeatureImportance = False
features = [f.lower() for f in mu.getModelConfig().features_nk]
# features = ['b2b_range', 'b2b_var', 'sse_2_clusters', 'sse_1_clusters', 'hrv_pnn20', 'hrv_pnn50', 'hrv_shanen', 'ecg_rate_mean', 'hrv_sd1']
# features = set(features) - set(['hfd', 'hrv_hf', 'hrv_lfhf', 'sd1', 'sample_entropy', 'max_sil_score', 'hrv_lf', 'b2b_var', 'rmssd', 'sd1/sd2', 'sd2', 'hopkins_statistic', 'b2b_std'])
# features = list(features)
# resnet, resnet_data = train(
# filterGold=False,
# usesplits=True,
# model="ResNet",
# verbose=True,
# )
lm, lm_data = train(
filterGold=False,
usesplits=True,
model="LabelModel",
verbose=True,
# filterUnreasonableValues=True
)
rf_sk, rf_sk_data = train(
filterGold=False,
usesplits=True,
model="RandomForestSK",
verbose=True,
# filterUnreasonableValues=True
reduceDimension=True,
# winsorize=True
)
lr, lr_data = train(
filterGold=False,
usesplits=True,
model="LogisticRegression",
verbose=True,
# filterUnreasonableValues=True
reduceDimension=True,
# winsorize=True
)
df = pd.read_csv('./data/assets/testset_featurized_w_phillips.csv')
# Filter
import numpy as np
df.replace([np.inf, -np.inf], np.nan, inplace=True)
df = df.dropna()
phillipsDF = df
phillips_true, phillips_pred = phillipsDF['label'].apply(lambda x: 'ATRIAL_FIBRILLATION' if x=='ATRIAL_FIBRILLATION' else 'SINUS'), phillipsDF['philafibmarker'].apply(lambda x: 'ATRIAL_FIBRILLATION' if x else 'SINUS')
if (showClassificationReport):
# resnet_cr = classification_report(
# y_true=resnet_data['testLabels'], y_pred=resnet_data['testPredictions']
# )
lm_cr = classification_report(
y_true=lm_data['testLabels'],
y_pred=lm_data['testPredictions']
)
lr_cr = classification_report(
y_true=lr_data['testLabels'],
y_pred=lr_data['testPredictions']
)
randForestSK_cr = classification_report(
y_true=rf_sk_data['testLabels'],
y_pred=rf_sk_data['testPredictions']
)
phil_cr = classification_report(
y_true=phillips_true,
y_pred=phillips_pred
)
print(f'LogisticRegressor classification report:\n{lr_cr}')
print(f'RandomForest (sklearn) classification report:\n{randForestSK_cr}')
# print(f'ResNet classification report:\n{resnet_cr}')
print(f'RandomForest (autonlab) classification report:\n{"... in progress ..."}')
print(f'Labelmodel classification report:\n{lm_cr}')
print(f'Phillips alerts classification report:\n{phil_cr}')
if (showFeatureImportance):
rf_sk_featureImportance, rfSK_fiSorted = permutationFeatureImportance(rf_sk, rf_sk_data['testData'], rf_sk_data['testLabels'], feature_subset=features, n_repeats=10)
lr_featureImportance, lr_fiSorted = permutationFeatureImportance(lr, lr_data['testData'], lr_data['testLabels'], feature_subset=features, n_repeats=10)
print('\n\n----- Feature importances -----\n\n')
newlinetab = "\n\t"
lr_fiSorted = [f'{name}: {importance:.2}' for name, importance in lr_fiSorted]
rfSK_fiSorted = [f'{name}: {importance:.2}' for name, importance in rfSK_fiSorted]
print(f'LogisticRegressor top features:{newlinetab}{newlinetab.join(lr_fiSorted)}')
print(f'RandomForest (sklearn) top features:{newlinetab}{newlinetab.join(rfSK_fiSorted)}')
print(f'ResNet top 5 features:\n\t{"... in progress ..."}')
print(f'RandomForest (autonlab) top 5 features:{newlinetab}{"... in progress ..."}')
yTests = list()
yScores = list()
titles = cycle(['LogisticRegressor', 'RandomForest (sklearn)', 'LabelModel', 'ResNet'])
afibIndex = list(lr.classes_).index('ATRIAL_FIBRILLATION')
for cacheddata in [lr_data, rf_sk_data, lm_data]:#resnet_data
yTests.append(cacheddata['testLabels'])
singleProbs = [prob[afibIndex] for prob in cacheddata['testPredProbabilities']]
yScores.append((next(titles),singleProbs))
roc(yTests, yScores, 'ROC Comparison')
'''
for modelName, model in models:
# fpr, tpr = dict(), dict()
# roc_auc = dict()
# fpr[0], tpr[0], _ = roc_curve(cacehddata['testLabels'], cacheddata['testPredProbabilities'])
# model, cacheddata = train(filterGold=True, usesplits=False, model=modelName, verbose=True)
disp = PrecisionRecallDisplay.from_estimator(model, cacheddata['testData'], cacheddata['testLabels'], pos_label="ATRIAL_FIBRILLATION", name=modelName)
plt.savefig(
Path(__file__).parent / 'results' / 'assets' / f'{modelName}_prCurve.png'
)
plt.clf()
if (modelName == 'LogisticRegression'):
# thanks to [this](https://sefiks.com/2021/01/06/feature-importance-in-logistic-regression/)
w = cacheddata['w']
fi = pd.DataFrame(cacheddata['features'], columns=['feature'])
fi['importance'] = pow(math.e, w)
fi = fi.sort_values(by = ['importance'])
fig, ax = plt.subplots()
ax = fi.plot.barh(x='feature', y='importance')
plt.suptitle('Feature importances (logistic regression model)')
plt.savefig(
Path(__file__).parent / 'results' / 'assets' / f'feature_importances.png'
)
plt.clf()
#select top 4 most important features for plotting
fi = fi.iloc[-4:, :]
for feature in fi['feature']:
fig, ax = plt.subplots()
ax.hist(cacheddata['trainData'][feature], label="Train data", histtype="step", density=True)
ax.hist( cacheddata['testData'][feature], label="Test data", histtype="step", density=True)
plt.legend()
plt.suptitle(f'{feature} distribution')
plt.xlabel('Standard deviations from mean, centered at 0')
plt.ylabel('Portion of data in this range')
plt.savefig(
Path(__file__).parent / 'results' / 'assets' / f'{feature}Histogram.png'
)
plt.clf()
'''