-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDCGAN_with_batchnormalisation.py
232 lines (174 loc) · 10.5 KB
/
DCGAN_with_batchnormalisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import tensorflow as tf
import numpy as np
from os import listdir
from os.path import isfile, join
import pickle
import random
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
beta_g=0.2
beta=0.2
drop_rate=0.4
noise_length=100
batch_size=8
annotation_dir = 'coco/test_annotations'
train_images= 'train_images/'
encoded_vector_dir = 'captions_encoded/'
epoch=1
epochs=10000000
def generate_coco_batch(batch_size):
batch=random.sample(listdir(train_images),batch_size)
real_images=np.empty(shape=[batch_size,64,64,3])
encoded_sentence=np.empty(shape=[batch_size,4800])
for i in range(len(batch)):
try:
real_images[i]=plt.imread(train_images+batch[i])
sentence_list=pickle.load(open(encoded_vector_dir+batch[i].strip('.png')+'.pkl','rb'))
encoded_sentence[i]=sentence_list[random.randint(0,4)]
except ValueError:
print("Black and white image")
return real_images,encoded_sentence
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
config.allow_soft_placement=True
sess=tf.Session(config=config)
def Generator(batch_size,z_len,encoded_sentences_tensor,reuse_flag):
with tf.variable_scope(tf.get_variable_scope(),reuse=reuse_flag):
g_w0=tf.get_variable('g_w0',shape=[4800,128],initializer=tf.contrib.layers.xavier_initializer())
g_b0=tf.get_variable('g_b0',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_a0=tf.matmul(encoded_sentences_tensor,g_w0)+g_b0
g_a0=tf.tanh(g_a0)
z=tf.truncated_normal([batch_size,z_len],mean=0,stddev=0.1) # Needs to be checked
ip=tf.concat([z,g_a0],1)
g_w1=tf.get_variable('g_w1',shape=[z_len+128,4*4*1024],initializer=tf.contrib.layers.xavier_initializer())
g_b1=tf.get_variable('g_b1',shape=[4*4*1024],initializer=tf.contrib.layers.xavier_initializer())
g_a1=tf.matmul(ip,g_w1)+g_b1
g_a1=tf.reshape(g_a1,[-1,4,4,1024])
g_a1=tf.maximum(g_a1,beta_g*g_a1)
g_w2=tf.get_variable('g_w2',shape=[5,5,256,1024],initializer=tf.contrib.layers.xavier_initializer())
g_b2=tf.get_variable('g_b2',shape=[256],initializer=tf.contrib.layers.xavier_initializer())
g_a2=tf.nn.conv2d_transpose(g_a1,g_w2,output_shape=[batch_size,16,16,256],strides=[1,4,4,1],padding='SAME')+g_b2
#g_a2=batch_norm(g_a2, [batch_size,16,16,256])
g_a2 = tf.layers.batch_normalization(g_a2, training=True)
g_a2=tf.maximum(g_a2,beta_g*g_a2)
'''
g_w3=tf.get_variable('g_w3',shape=[5,5,256,512],initializer=tf.contrib.layers.xavier_initializer())
g_b3=tf.get_variable('g_b3',shape=[256],initializer=tf.contrib.layers.xavier_initializer())
g_a3=tf.nn.conv2d_transpose(g_a2,g_w3,output_shape=[batch_size,16,16,256],strides=[1,2,2,1],padding='SAME')+g_b3
g_a3=tf.maximum(g_a3,beta_g*g_a3)
'''
g_w4=tf.get_variable('g_w4',shape=[5,5,128,256],initializer=tf.contrib.layers.xavier_initializer())
g_b4=tf.get_variable('g_b4',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_a4=tf.nn.conv2d_transpose(g_a2,g_w4,output_shape=[batch_size,32,32,128],strides=[1,2,2,1],padding='SAME')+g_b4
g_a4 = tf.layers.batch_normalization(g_a4,training=True)
g_a4=tf.maximum(g_a4,beta_g*g_a4)
g_w5=tf.get_variable('g_w5',shape=[5,5,64,128],initializer=tf.contrib.layers.xavier_initializer())
g_b5=tf.get_variable('g_b5',shape=[64],initializer=tf.contrib.layers.xavier_initializer())
g_a5=tf.nn.conv2d_transpose(g_a4,g_w5,output_shape=[batch_size,64,64,64],strides=[1,2,2,1],padding='SAME')+g_b5
g_a5 = tf.layers.batch_normalization(g_a5,training=True)
g_a5=tf.maximum(g_a5,beta*g_a5)
g_w6=tf.get_variable('g_w6',shape=[5,5,3,64],initializer=tf.contrib.layers.xavier_initializer())
g_b6=tf.get_variable('g_b6',shape=[3],initializer=tf.contrib.layers.xavier_initializer())
g_a6=tf.nn.conv2d_transpose(g_a5,g_w6,output_shape=[batch_size,64,64,3],strides=[1,1,1,1],padding='SAME')+g_b6
g_a6 = tf.layers.batch_normalization(g_a6,training=True)
return tf.nn.sigmoid(g_a6)
def Discriminator(image_tensor,encoded_sentences_tensor,reuse_flag):
with tf.variable_scope(tf.get_variable_scope(),reuse=reuse_flag):
d_w0=tf.get_variable('d_w0',shape=[4800,64*64],initializer=tf.contrib.layers.xavier_initializer())
d_b0=tf.get_variable('d_b0',shape=[64*64],initializer=tf.contrib.layers.xavier_initializer())
d_a0=tf.matmul(encoded_sentences_tensor,d_w0)+d_b0
d_a0=tf.tanh(d_a0)
d_a0=tf.reshape(d_a0,shape=[-1,64,64,1])
d_a0=tf.concat([image_tensor,d_a0],axis=3)
d_w1=tf.get_variable('d_w1',shape=[5,5,4,64],initializer=tf.contrib.layers.xavier_initializer())
d_b1=tf.get_variable('d_b1',shape=[64],initializer=tf.contrib.layers.xavier_initializer())
d_a1=tf.nn.conv2d(d_a0,d_w1,strides=[1,2,2,1],padding='SAME')+d_b1
d_a1=tf.maximum(d_a1,beta*d_a1)
d_a1=tf.nn.dropout(d_a1,drop_rate)
d_w2=tf.get_variable('d_w2',shape=[5,5,64,128],initializer=tf.contrib.layers.xavier_initializer())
d_b2=tf.get_variable('d_b2',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
d_a2=tf.nn.conv2d(d_a1,d_w2,strides=[1,2,2,1],padding='SAME')+d_b2
d_a1=tf.maximum(d_a2,beta*d_a2)
d_a2=tf.nn.dropout(d_a2,drop_rate)
d_w3=tf.get_variable('d_w3',shape=[5,5,128,256],initializer=tf.contrib.layers.xavier_initializer())
d_b3=tf.get_variable('d_b3',shape=[256],initializer=tf.contrib.layers.xavier_initializer())
d_a3=tf.nn.conv2d(d_a2,d_w3,strides=[1,2,2,1],padding='SAME')+d_b3
d_a3=tf.maximum(d_a3,beta*d_a3)
d_a3=tf.nn.dropout(d_a3,drop_rate)
#d_a3=tf.nn.relu(d_a3)
d_w4=tf.get_variable('d_w4',shape=[5,5,256,512],initializer=tf.contrib.layers.xavier_initializer())
d_b4=tf.get_variable('d_b4',shape=[512],initializer=tf.contrib.layers.xavier_initializer())
d_a4=tf.nn.conv2d(d_a3,d_w4,strides=[1,2,2,1],padding='SAME')+d_b4
d_a4=tf.maximum(d_a4,beta*d_a4)
d_a4=tf.nn.dropout(d_a4,drop_rate)
#d_a4=tf.nn.relu(d_a4)
d_w5=tf.get_variable('d_w5',shape=[5,5,512,1024],initializer=tf.contrib.layers.xavier_initializer())
d_b5=tf.get_variable('d_b5',shape=[1024],initializer=tf.contrib.layers.xavier_initializer())
d_a5=tf.nn.conv2d(d_a4,d_w5,strides=[1,2,2,1],padding='SAME')+d_b5
d_a5=tf.maximum(d_a5,beta*d_a5)
#d_a5=tf.sigmoid(d_a5)
d_a5=tf.nn.dropout(d_a5,drop_rate)
#d_a5=tf.reshape(d_a5,[-1,2*2*1024])
'''
d_w6=tf.get_variable('d_w6',shape=[5,5,1024,2048],initializer=tf.contrib.layers.xavier_initializer())
d_b6=tf.get_variable('d_b6',shape=[2048],initializer=tf.contrib.layers.xavier_initializer())
d_a6=tf.nn.conv2d(d_a5,d_w6,strides=[1,2,2,1],padding='SAME')+d_b6
d_a6=tf.maximum(d_a6,beta*d_a6)
d_a6=tf.nn.dropout(d_a6,drop_rate)
d_a6=tf.reshape(d_a6,[-1,2*2*2048])
d_w6=tf.get_variable('d_w6',shape=[2*2*1024,1],initializer=tf.contrib.layers.xavier_initializer())
d_b6=tf.get_variable('d_b6',shape=[1],initializer=tf.contrib.layers.xavier_initializer())
d_a6=tf.matmul(d_a5,d_w6)+d_b6
d_a6_0=tf.nn.sigmoid(d_a6)
'''
return d_a5
encoded_sentences_tensor=tf.placeholder(tf.float32,shape=[batch_size,4800])
real_images_tensor=tf.placeholder(tf.float32,shape=[batch_size,64,64,3])
arbit_sentences_tensor=tf.placeholder(tf.float32,shape=[batch_size,4800])
generated_images_tensor=Generator(batch_size,noise_length,encoded_sentences_tensor,False)
Dg=Discriminator(generated_images_tensor,encoded_sentences_tensor,False)
Dx=Discriminator(real_images_tensor,encoded_sentences_tensor,True)
Df=Discriminator(real_images_tensor,arbit_sentences_tensor,True)
'''
W_g=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg,labels=tf.ones_like(Dg)-0.1))
W_d_real=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dx,labels=tf.ones_like(Dx)-0.1))
W_d_fake=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg,labels=tf.zeros_like(Dg)+0.0))
W_d_bad=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Df,labels=tf.zeros_like(Df)+0.0))
W_d=W_d_real+W_d_fake+W_d_bad
'''
W_g=tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(logits=Dg,pos_weight=1,targets=tf.ones_like(Dg)-0.0))
W_d_real=tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(logits=Dx,pos_weight=1,targets=tf.ones_like(Dx)-0.0))
W_d_fake=tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(logits=Dg,pos_weight=1,targets=tf.zeros_like(Dg)+0.0))
W_d_bad=tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(logits=Df,pos_weight=1,targets=tf.zeros_like(Df)+0.0))
W_d=W_d_real+W_d_fake+W_d_bad
tvars = tf.trainable_variables()
d_vars = [var for var in tvars if 'd_' in var.name]
g_vars = [var for var in tvars if 'g_' in var.name]
d_trainer=tf.train.AdamOptimizer(0.5e-3,beta1=0.1).minimize(W_d,var_list=d_vars)
g_trainer=tf.train.AdamOptimizer(0.5e-3,beta1=0.1).minimize(W_g, var_list=g_vars)
sess.run(tf.global_variables_initializer())
saver=tf.train.Saver()
count = 1
gLoss, dLoss = 0.0, 0.0
#saver.restore(sess,'./saved_models-soumya/c2i-43500')
out =open('loss.csv','w')
out.write('epoch, gloss, dloss\n')
while epoch<epochs:
real_images,encoded_sentences=generate_coco_batch(batch_size)
_,arbit_sentences=generate_coco_batch(batch_size)
if count%4 != 0:
_,dLoss=sess.run([d_trainer,W_d],feed_dict={real_images_tensor:real_images,encoded_sentences_tensor:encoded_sentences,arbit_sentences_tensor:arbit_sentences})
count = count +1
else:
real_images,encoded_sentences=generate_coco_batch(batch_size)
_,gLoss=sess.run([g_trainer,W_g],feed_dict={real_images_tensor:real_images, encoded_sentences_tensor:encoded_sentences})
count = 1
if epoch%100==0:
saver.save(sess,'./saved_models-BN-test/c2i',global_step=epoch)
gen_images=sess.run(generated_images_tensor,feed_dict={real_images_tensor:real_images, encoded_sentences_tensor:encoded_sentences})
plt.imsave(arr=gen_images[0],fname='./outputs-BN-test/'+str(epoch)+'_gen.png')
plt.imsave(arr=real_images[0],fname='./outputs-BN-test/'+str(epoch)+'_gt.png')
out.write(str(epoch)+ ','+ str(gLoss)+ ',' + str(dLoss)+'\n')
epoch=epoch+1
print("epochs: "+ str(epoch)+" dloss: "+str(dLoss)+ " gloss: "+str(gLoss))
out.close()