GPU accelerated, multi-arch (linux/amd64
, linux/arm64/v8
) docker images:
Images available for QGIS versions ≥ 3.34.0.
Features
The same as the JupyterLab QGIS docker stack plus
- VirtualGL: Enables OpenGL applications to run with full GPU acceleration.
- CUDA runtime, CUDA math libraries and NCCL
👉 See the CUDA Version Matrix for detailed information.
Subtags
The same as the JupyterLab QGIS docker stack.
The same as the JupyterLab QGIS docker stack plus
- NVIDIA GPU
- NVIDIA Linux driver
- NVIDIA Container Toolkit
ℹ️ The host running the GPU accelerated images only requires the NVIDIA driver, the CUDA toolkit does not have to be installed.
Use driver version 535 (Long Term Support Branch) with NVIDIA Data Center GPUs or select NGC-Ready NVIDIA RTX boards to ensure forward compatibility until June 2026.
To install the NVIDIA Container Toolkit, follow the instructions for your platform:
latest:
cd base && docker build \
--build-arg BASE_IMAGE=ubuntu \
--build-arg BASE_IMAGE_TAG=22.04 \
--build-arg CUDA_IMAGE=nvidia/cuda \
--build-arg CUDA_IMAGE_SUBTAG=runtime-ubuntu22.04 \
--build-arg CUDA_VERSION=12.6.3 \
--build-arg QGIS_VERSION=3.40.2 \
--build-arg OTB_VERSION=9.1.0 \
--build-arg PYTHON_VERSION=3.12.8 \
--build-arg GIT_VERSION=2.47.1 \
-t jupyterlab/cuda/qgis/base \
-f Dockerfile .
ltr/version:
cd base && docker build \
--build-arg BASE_IMAGE=ubuntu \
--build-arg BASE_IMAGE_TAG=22.04 \
--build-arg CUDA_IMAGE=nvidia/cuda \
--build-arg CUDA_IMAGE_SUBTAG=runtime-ubuntu22.04 \
--build-arg CUDA_VERSION=11.8.0 \
--build-arg QGIS_VERSION=3.34.14 \
--build-arg OTB_VERSION=8.1.2 \
--build-arg PYTHON_VERSION=3.11.10 \
--build-arg GIT_VERSION=2.47.1 \
-t jupyterlab/cuda/qgis/base:ltr \
-f Dockerfile .
Create an empty directory using docker:
docker run --rm \
-v "${PWD}/jupyterlab-jovyan":/dummy \
alpine chown 1000:100 /dummy
It will be bind mounted as the JupyterLab user's home directory and
automatically populated.
❗ Bind mounting a subfolder of the home directory is only possible
for images with QGIS version ≥ 3.34.4.
self built:
docker run -it --rm \
--gpus 'device=all' \
-p 8888:8888 \
-u root \
-v "${PWD}/jupyterlab-jovyan":/home/jovyan \
-e NB_UID=$(id -u) \
-e NB_GID=$(id -g) \
-e CHOWN_HOME=yes \
-e CHOWN_HOME_OPTS='-R' \
jupyterlab/cuda/qgis/base{:ltr,:MAJOR.MINOR.PATCH}
from the project's GitLab Container Registries:
docker run -it --rm \
--gpus 'device=all' \
-p 8888:8888 \
-u root \
-v "${PWD}/jupyterlab-jovyan":/home/jovyan \
-e NB_UID=$(id -u) \
-e NB_GID=$(id -g) \
-e CHOWN_HOME=yes \
-e CHOWN_HOME_OPTS='-R' \
IMAGE{:ltr,:MAJOR[.MINOR[.PATCH]]}
IMAGE
being one of
The use of the -v
flag in the command mounts the empty directory on the host
(${PWD}/jupyterlab-jovyan
in the command) as /home/jovyan
in the container.
-e NB_UID=$(id -u) -e NB_GID=$(id -g)
instructs the startup script to switch
the user ID and the primary group ID of ${NB_USER}
to the user and group ID of
the one executing the command.
-e CHOWN_HOME=yes -e CHOWN_HOME_OPTS='-R'
instructs the startup script to
recursively change the ${NB_USER}
home directory owner and group to the
current value of ${NB_UID}
and ${NB_GID}
.
ℹ️ This is only required for the first run.
The server logs appear in the terminal.
Create an empty home directory:
mkdir "${PWD}/jupyterlab-root"
Use the following command to run the container as root
:
podman run -it --rm \
--device 'nvidia.com/gpu=all' \
-p 8888:8888 \
-u root \
-v "${PWD}/jupyterlab-root":/home/root \
-e NB_USER=root \
-e NB_UID=0 \
-e NB_GID=0 \
-e NOTEBOOK_ARGS="--allow-root" \
IMAGE{:ltr,:MAJOR[.MINOR[.PATCH]]}
#### Using Docker Desktop
Creating a home directory might not be required. Also
docker run -it --rm \
--gpus 'device=all' \
-p 8888:8888 \
-v "${PWD}/jupyterlab-jovyan":/home/jovyan \
IMAGE{:ltr,:MAJOR[.MINOR[.PATCH]]}
might be sufficient.
None. I would like to mention
which also relies on VirtualGL (EGL backend) for direct access to the GPU.
What makes this project unique:
- Multi-arch:
linux/amd64
,linux/arm64/v8
ℹ️ No GPU acceleration on Apple M series. - Derived from
nvidia/cuda:12.6.3-runtime-ubuntu22.04
- VirtualGL: Fully GPU accelerated OpenGL applications
- Just Python – no Conda / Mamba
See Notes for tweaks, settings, etc.