GPU accelerated, multi-arch (linux/amd64
, linux/arm64/v8
) docker images:
glcr.b-data.ch/jupyterlab/cuda/r/base
glcr.b-data.ch/jupyterlab/cuda/r/tidyverse
glcr.b-data.ch/jupyterlab/cuda/r/verse
glcr.b-data.ch/jupyterlab/cuda/r/geospatial
glcr.b-data.ch/jupyterlab/cuda/r/qgisprocess
(versions ≥ 4.3.0)
Images available for R versions ≥ 4.2.2.
🔬 Check out jupyterlab/cuda/r/verse
at
https://demo.cuda.jupyter.b-data.ch.
Build chain
The same as the JupyterLab R docker stack.
Features
The same as the JupyterLab R docker stack plus
- CUDA runtime,
CUDA math libraries,
NCCL and
cuDNN
- including development libraries and headers
- TensortRT and TensorRT plugin libraries
- including development libraries and headers
- NVBLAS-enabled
R_
andRscript_
- using standard R terminal instead of radian in code-server
👉 See the CUDA Version Matrix for detailed information.
Subtags
The same as the JupyterLab R docker stack.
The same as the JupyterLab R docker stack plus
- NVIDIA GPU
- NVIDIA Linux driver
- NVIDIA Container Toolkit
ℹ️ The host running the GPU accelerated images only requires the NVIDIA driver, the CUDA toolkit does not have to be installed.
Use driver version 535 (Long Term Support Branch) with NVIDIA Data Center GPUs or select NGC-Ready NVIDIA RTX boards to ensure forward compatibility until June 2026.
To install the NVIDIA Container Toolkit, follow the instructions for your platform:
latest:
cd base && docker build \
--build-arg BASE_IMAGE=ubuntu \
--build-arg BASE_IMAGE_TAG=22.04 \
--build-arg BUILD_ON_IMAGE=glcr.b-data.ch/cuda/r/ver \
--build-arg R_VERSION=4.4.2 \
--build-arg CUDA_IMAGE_FLAVOR=devel \
-t jupyterlab/cuda/r/base \
-f latest.Dockerfile .
version:
cd base && docker build \
--build-arg BASE_IMAGE=ubuntu \
--build-arg BASE_IMAGE_TAG=22.04 \
--build-arg BUILD_ON_IMAGE=glcr.b-data.ch/cuda/r/ver \
--build-arg CUDA_IMAGE_FLAVOR=devel \
-t jupyterlab/cuda/r/base:MAJOR.MINOR.PATCH \
-f MAJOR.MINOR.PATCH.Dockerfile .
For MAJOR.MINOR.PATCH
≥ 4.2.2
.
Create an empty directory using docker:
docker run --rm \
-v "${PWD}/jupyterlab-jovyan":/dummy \
alpine chown 1000:100 /dummy
It will be bind mounted as the JupyterLab user's home directory and
automatically populated.
❗ Bind mounting a subfolder of the home directory is only possible
for images with R version ≥ 4.3.2.
self built:
docker run -it --rm \
--gpus '"device=all"' \
-p 8888:8888 \
-u root \
-v "${PWD}/jupyterlab-jovyan":/home/jovyan \
-e NB_UID=$(id -u) \
-e NB_GID=$(id -g) \
-e CHOWN_HOME=yes \
-e CHOWN_HOME_OPTS='-R' \
jupyterlab/cuda/r/base[:MAJOR.MINOR.PATCH]
from the project's GitLab Container Registries:
docker run -it --rm \
--gpus '"device=all"' \
-p 8888:8888 \
-u root \
-v "${PWD}/jupyterlab-jovyan":/home/jovyan \
-e NB_UID=$(id -u) \
-e NB_GID=$(id -g) \
-e CHOWN_HOME=yes \
-e CHOWN_HOME_OPTS='-R' \
IMAGE[:MAJOR[.MINOR[.PATCH]]]
IMAGE
being one of
glcr.b-data.ch/jupyterlab/cuda/r/base
glcr.b-data.ch/jupyterlab/cuda/r/tidyverse
glcr.b-data.ch/jupyterlab/cuda/r/verse
glcr.b-data.ch/jupyterlab/cuda/r/geospatial
glcr.b-data.ch/jupyterlab/cuda/r/qgisprocess
The use of the -v
flag in the command mounts the empty directory on the host
(${PWD}/jupyterlab-jovyan
in the command) as /home/jovyan
in the container.
-e NB_UID=$(id -u) -e NB_GID=$(id -g)
instructs the startup script to switch
the user ID and the primary group ID of ${NB_USER}
to the user and group ID of
the one executing the command.
-e CHOWN_HOME=yes -e CHOWN_HOME_OPTS='-R'
instructs the startup script to
recursively change the ${NB_USER}
home directory owner and group to the
current value of ${NB_UID}
and ${NB_GID}
.
ℹ️ This is only required for the first run.
The server logs appear in the terminal.
Create an empty home directory:
mkdir "${PWD}/jupyterlab-root"
Use the following command to run the container as root
:
podman run -it --rm \
--device 'nvidia.com/gpu=all' \
-p 8888:8888 \
-u root \
-v "${PWD}/jupyterlab-root":/home/root \
-e NB_USER=root \
-e NB_UID=0 \
-e NB_GID=0 \
-e NOTEBOOK_ARGS="--allow-root" \
IMAGE[:MAJOR[.MINOR[.PATCH]]]
Creating a home directory might not be required. Also
docker run -it --rm \
--gpus '"device=all"' \
-p 8888:8888 \
-v "${PWD}/jupyterlab-jovyan":/home/jovyan \
IMAGE[:MAJOR[.MINOR[.PATCH]]]
might be sufficient.
What makes this project different:
- Multi-arch:
linux/amd64
,linux/arm64/v8
- Derived from
nvidia/cuda:12.6.3-devel-ubuntu22.04
- including development libraries and headers
- TensortRT and TensorRT plugin libraries
- including development libraries and headers
- IDE: code-server next to JupyterLab
- Just Python – no Conda / Mamba
See Notes for tweaks, settings, etc.