forked from francopestilli/life_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeVirtualLesion.m
223 lines (205 loc) · 10.4 KB
/
feVirtualLesion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
function [se, fig, feLesion, feNoLesion, newFascicleIndices, indicesFibersKept, commonCoords] = ...
feVirtualLesion(feNoLesion, fascicleIndices, display, refitConnectome)
%
% [se, fh, feLesion, feNoLesion, newFascicleIndices, indicesFibersKept, commonCoords] = ...
% feVirtualLesion(feNoLesion, fascicleIndices, refitConnectome, display)
%
% Perform a virtual lesion.
% - Remove a set of fascicles from a whole-brain connectome
% - Find the fascicle's path-neighborhood (the set of fascicles that share the same voxels)
% - Reduce the connectome to only the voxels of the set of fascicels that
% we are lesioning. These are the voxels that contain the signal and the
% error useful for the lesion test.
% - Compute a series of statistics on the lesioned connectome.
%
% Copyright Franco Pestilli Stanford University 2014
if notDefined('display'),
display.tract = 0;
display.distributions = 0;
display.evidence = 0;
fig = [];
end
if notDefined('refitConnectome'), refitConnectome = 0;end
% Handling parallel processing
poolwasopen=1; % if a matlabpool was open already we do not open nor close one
if (matlabpool('size') == 0), matlabpool open; poolwasopen=0; end
tic,fprintf('\n[%s] Performing the lesion (removing fascicles from the connectome)... ',mfilename)
if ~islogical( fascicleIndices )
nfibers = feGet(feNoLesion,'nfibers');
fascicles2keep = false(nfibers,1);
fascicles2keep(fascicleIndices) = true;
else
fascicles2keep = fascicleIndices;
end
feLesion = feConnectomeReduceFibers(feNoLesion, fascicles2keep );toc
% Extract the fascicle out of the fiber group.
fas = fgExtract(feGet(feNoLesion,'fibers img'), fascicleIndices, 'keep' );
fasAcpc = fgExtract(feGet(feNoLesion,'fibers acpc'), fascicleIndices, 'keep' );
% Get the cordinates of the fascicle we just deleted. These coordinates are
% contained in the full connectome. We want to fin the indices in the M
% matrix to the the voxels of the fascicle and keep only those voxels.
tic, fprintf('\n[%s] Finding the voxels of fascicle... ',mfilename)
fasCoords = fefgGet(fas,'unique image coords');
allCoords = feGet(feNoLesion, 'roi coords');
commonCoords = ismember(allCoords, fasCoords, 'rows'); toc
% Now: commonCoords contains the indices of the voxels to keep from feLesion,
% these voxels are part of the connectome feNoLesion. So now we want to delete all
% the rest of the voxels from feLesion and keep only the voxels where
% the fascicle in feFP goes through.
%
% At the same time we keep all the fibers in the connectome that still pass
% throught the left voxels in the ROI. We will use this subset of voxels
% and fibers to test the quality of fit of the connectome at the location
% where the feFN fascicle went through.
tic,fprintf('\n[%s] Creating a lesioned connectome... ',mfilename)
feLesion = feConnectomeReduceVoxels(feLesion,find(commonCoords));
toc
tic,fprintf('\n[%s] Creating an unleasioned path-neighborhood connectome... ',mfilename)
[feNoLesion, indicesFibersKept] = feConnectomeReduceVoxels(feNoLesion, find(commonCoords));
toc
tic,fprintf('\n[%s] Finding the pathneighborhood voxels... ',mfilename)
% Here we return the indices of the fascicle in the newly resized connectome.
newFascicleIndices = ismember(find(indicesFibersKept),...
find(fascicleIndices),'rows');
toc
% Fit the connectomes unlesioned the leftover fibers.
if refitConnectome
% Refit and install the fit.
tic, fprintf('\n[%s] Fitting connectome lesioned the fascicle... ',mfilename)
feLesion = feSet(feLesion,'fit', ...
feFitModel(feGet(feLesion,'Mfiber'),feGet(feLesion,'dsigdemeaned'), ...
'bbnnls'));toc
tic, fprintf('\n[%s] Fitting connectome unlesioned the fascicle... ',mfilename)
feNoLesion = feSet(feNoLesion, 'fit', ...
feFitModel(feGet(feNoLesion,'Mfiber'), feGet(feNoLesion,'dsigdemeaned'), ...
'bbnnls'));toc
end
se = feComputeEvidence((feGetRep(feNoLesion,'vox rmse')),(feGetRep(feLesion, 'vox rmse')));
fig(1).name = sprintf('rmse_distributions_%s',mfilename);
fig(1).h = nan;
fig(1).type = 'eps';
if display.distributions
% Raw RMSE distirbutions
fig(1).name = sprintf('rmse_distributions_%s',mfilename);
fig(1).h = figure('name',fig(1).name,'color','w');
fig(1).type = 'eps';
set(fig(1).h,'Units','normalized','Position',[0.007 0.55 0.28 0.36]);
plot(se.lesion.xhist,se.lesion.hist,'-','color', [.95 .45 .1],'linewidth',2); hold on
plot(se.nolesion.xhist,se.nolesion.hist,'-','linewidth',2, 'color', [.1 .45 .95])
plot([se.nolesion.rmse.mean,se.nolesion.rmse.mean], [0,0.12],'-','color',[.1 .45 .95] )
plot([se.lesion.rmse.mean,se.lesion.rmse.mean], [0,0.12], '-', 'color',[.95 .45 .1])
title(sprintf('mean RMSE\nno-lesion %2.3f | lesion %2.2f',se.nolesion.rmse.mean,se.lesion.rmse.mean),'fontsize',16)
ylabel('Probability', 'fontsize',14);xlabel('RMSE', 'fontsize',14)
legend({'Lesion','No lesion'},'fontsize',14);
set(gca,'box','off','xtick',[0 round(se.xrange(2)/2) se.xrange(2)],'ytick',[0 .06 .12],'xlim',[0 se.xrange(2)],'ylim',[0 .125], ...
'tickdir', 'out', 'ticklength', [0.025 0])
% Plot the null distribution and the empirical difference
% We reorganize the variables names hee below just to keep the plotting
% code more compact.
ywo_e = se.s.lesioned_e;
y_e = se.s.unlesioned_e;
woxhis = se.s.lesioned.xbins;
xhis = se.s.unlesioned.xbins;
min_x = se.s.min_x;
max_x = se.s.max_x;
fig(2).name = sprintf('virtual_lesion_test_mean_rmse_hist_%s_%s',mfilename,feLesion.name);
fig(2).h = figure('name',fig(2).name,'color','w');
fig(2).type = 'eps';
set(fig(2).h,'Units','normalized','Position',[0.007 0.55 0.28 0.36]);
patch([xhis,xhis],y_e(:),[.1 .45 .95],'FaceColor',[.1 .45 .95],'EdgeColor',[.1 .45 .95]);
hold on
patch([woxhis,woxhis],ywo_e(:),[.95 .45 .1],'FaceColor',[.95 .45 .1],'EdgeColor',[.95 .45 .1]);
set(gca,'tickdir','out', ...
'box','off', ...
'ylim',[0 0.25], ...
'xlim',[min_x,max_x], ...
'ytick',[0 0.1 0.2], ...
'xtick',round(linspace(min_x,max_x,4)), ...
'fontsize',16)
ylabel('Probability','fontsize',16)
xlabel('rmse','fontsize',16')
title(sprintf('Strength of connection evidence %2.3f',(se.s.mean)), 'FontSize',16)
end
fig(3).name = sprintf('tract_%s',mfilename);
fig(3).h = nan;
fig(3).type = 'jpg';
fig(4).name = sprintf('pathneighborhood_%s',mfilename);
fig(4).h = nan;
fig(4).type = 'jpg';
fig(5).name = sprintf('pathneighborhood_AND_tract_%s',mfilename);
fig(5).h = nan;
fig(5).type = 'jpg';
if display.tract
% Now display the lesion performed.
% (1) The fascicle to delete.
fig(3).name = sprintf('tract_%s',mfilename);
fig(3).h = figure('name',fig(3).name,'color',[.1 .45 .95]);
fig(3).type = 'jpg';
[fig(3).h, fig(3).light] = mbaDisplayConnectome(mbaFiberSplitLoops(fasAcpc.fibers),fig(3).h, [.1 .45 .95],'single',[],[],.2);
view(-23,-23);delete(fig(3).light); fig(3).light = camlight('right');
tmp_fas = feGet(feNoLesion,'fibers acpc');
fibers2display = randsample(1:length(tmp_fas.fibers),ceil(0.01*length(tmp_fas.fibers)));
fig(4).name = sprintf('pathneighborhood_%s',mfilename);
fig(4).h = figure('name',fig(4).name,'color',[.1 .45 .95]);
fig(4).type = 'jpg';
[fig(4).h, fig(4).light] = mbaDisplayConnectome(mbaFiberSplitLoops(...
tmp_fas.fibers(fibers2display)),fig(4).h, [.95 .45 .1],'single',[],.6,.2);
view(-23,-23);delete(fig(2).light); fig(4).light = camlight('right');
% (2) The facicle with the pah neighborhood
fig(5).name = sprintf('pathneighborhood_AND_tract_%s',mfilename);
fig(5).h = figure('name',fig(5).name,'color',[.1 .45 .95]);
fig(5).type = 'jpg';
[fig(5).h, fig(5).light] = mbaDisplayConnectome(mbaFiberSplitLoops(fasAcpc.fibers),fig(5).h, [.1 .45 .95],'single',[],[],.2);
view(-23,-23);delete(fig(5).light);
hold on
[fig(5).h, fig(5).light] = mbaDisplayConnectome(mbaFiberSplitLoops(...
tmp_fas.fibers(fibers2display)),fig(5).h, [.95 .45 .1],'single',[],.6,.2);
view(-23,-23);delete(fig(5).light); fig(5).light = camlight('right');
% Show the voxels coordinates to see if we are in the right spot
plot_test_fiber_location_debug= false;
if plot_test_fiber_location_debug
figure('name','Coordinate check');
plot3(allCoords(commonCoords,1),allCoords(commonCoords,2), ...
allCoords(commonCoords,3),'ko','MarkerFaceColor','k','MarkerSize',8);
hold on;
plot3(fasCoords(:,1),fasCoords(:,2),fasCoords(:,3),'ro', ...
'MarkerFaceColor',[.95 .45 .1],'MarkerSize',3);
axis equal
view(-23,-23); hold on
plot3(allCoords(commonCoords,1),allCoords(commonCoords,2), ...
allCoords(commonCoords,3),'go','MarkerFaceColor','g','MarkerSize',12);
view(-23,-23);
end
end
% RMSE distributions
fig(6).name = sprintf('Size_of_effect_of_the_lesion_%s',mfilename);
fig(6).type = 'eps';
fig(6).h = nan;
if display.evidence
fig(6).name = sprintf('Size_of_effect_of_the_lesion_%s',mfilename);
fig(6).h = figure('name',fig(6).name,'color','w');
set(fig(6).h,'Units','normalized','Position',[0.007 0.55 0.28 0.36]);
subplot(1,4,1)
plot(1,se.s.mean,'-o','color', [.95 .45 .1],'linewidth',2); hold on
plot([1,1], [se.s.mean,se.s.mean] + [-se.s.std,se.s.std], '-','color',[.95 .45 .1] )
ylabel('S (s.d.)', 'fontsize',14);
set(gca,'box','off','xlim',[0 2], 'ylim',[0 ceil(se.s.mean + se.s.std)], ...
'tickdir', 'out', 'ticklength', [0.025 0])
subplot(1,4,2)
plot(1,se.em.mean,'-o','color', [.95 .45 .1],'linewidth',2); hold on
ylabel('Earth mover''s distance (raw scanner units)', 'fontsize',14);
set(gca,'box','off','xlim',[0 2], 'ylim',[0 ceil(se.em.mean)], ...
'tickdir', 'out', 'ticklength', [0.025 0])
subplot(1,4,3)
plot(1,se.kl.mean,'-o','color', [.95 .45 .1],'linewidth',2); hold on
ylabel('K-L divergence (bits)', 'fontsize',14);
set(gca,'box','off','xlim',[0 2], 'ylim',[0 ceil(se.kl.mean)], ...
'tickdir', 'out', 'ticklength', [0.025 0])
subplot(1,4,4)
plot(1,se.j.mean,'-o','color', [.95 .45 .1],'linewidth',2); hold on
ylabel('Jeffrey''s divergence (bits)', 'fontsize',14);
set(gca,'box','off','xlim',[0 2], 'ylim',[0 ceil(se.j.mean)], ...
'tickdir', 'out', 'ticklength', [0.025 0])
end
if ~poolwasopen, matlabpool close; end
end