forked from francopestilli/life_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths_fe_probabilistic_vs_deterministic.m
185 lines (154 loc) · 6.15 KB
/
s_fe_probabilistic_vs_deterministic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
function s_fe_probabilistic_vs_deterministic()
%
% This function llustrates how to:
% - Loads two LIFE structures for Probabilistic and Deterministic
% connectomes
% - Compares the prediction accuracy of the two connectomes
% - Shows the strenght of evidence in favor for the better fit to the data
% shown by the probabilistic connectome
%
% s_fe_probabilistic_vs_deterministic()
%
% INPUTS: none
% OUTPUTS: none
%
% Copyright Franco Pestilli (2013) Vistasoft Stanford University.
% Get the base directory for the data
datapath = pestilliDataPath;
%% Load two pre-culled connectomes
%
feProbFileName = 'subject1_life_culled_2mm_150dir_b2000_probabilistic_lmax8_diffModAx100Rd0.mat';
feDetFileName = 'subject1_life_culled_2mm_150dir_b2000_tensor_diffModAx100Rd0.mat';
p = load(fullfile(datapath,'life_structures',feProbFileName));
d = load(fullfile(datapath,'life_structures',feDetFileName));
% Extract the RMSE, R_rmse and the coordinates of the white matter
p.rmse = feGetRep(p.fe,'vox rmse');
p.rrmse = feGetRep(p.fe,'vox rmse ratio');
p.coords = feGet( p.fe,'roi coords');
d.rmse = feGetRep(d.fe, 'vox rmse');
d.rrmse = feGetRep(d.fe, 'vox rmse ratio');
d.coords = feGet( d.fe, 'roi coords');
%% Find the common coordinates between the two connectomes
%
% There are more coordinates in the Prob conectome, because the tracking
% fills up more White-matter.
%
% So, first we find the indices in the probabilistic connectome of the
% coordinate in the deterministic conenctome.
%
% But there are some of the coordinates in the Deterministic conectome that
% are NOT in the Probabilistic connectome.
%
% So, second we find the indices in the Deterministic connectome of the
% subset of coordinates in the Probabilistic connectome found in the
% previous step.
% First we find the coordinates in the Probabilistic conectome that are
% also in the Deterministic connectome.
prob.coordsIdx = ismember(p.coords,d.coords,'rows');
% Second we find the coordinates in the Deterministic connectome that are
% also in the Probabilistic connectome.
prob.coords = p.coords(prob.coordsIdx,:);
det.coordsIdx = ismember(d.coords,prob.coords,'rows');
det.coords = d.coords(det.coordsIdx,:);
% What we really need is detCoordsIdx and probCoordsIdx. These allow us to
% find the common voxel indices in rmse and rrmse, etc.
prob.rmse = p.rmse( prob.coordsIdx);
prob.rrmse = p.rrmse(prob.coordsIdx);
det.rmse = d.rmse( det.coordsIdx);
det.rrmse = d.rrmse(det.coordsIdx);
%% RMSE scatter-density plot of Probabilistic and Deterministic
scatterPlotRMSE(det,prob)
%% Make a statisitcal test. To show that the Probabilistic model is better
% than the deterministic model when using all the voxels.
nmontecarlo = 5;
nboots = 1000;
nbins = 200;
sizeWith = length(det.rmse);
nullDistributionP = nan(nboots,nmontecarlo);
nullDistributionD = nan(nboots,nmontecarlo);
y = nan(nbins,nmontecarlo);woy = y;
% Repeat the bootstrap several times
for inm = 1:nmontecarlo
% Bootstrap the mean RMSE
parfor ibt = 1:nboots
nullDistributionP(ibt,inm) = mean(randsample(prob.rmse, sizeWith,true));
nullDistributionD(ibt,inm) = mean(randsample(det.rmse, sizeWith,true));
end
% Distribution probabilistic
[y(:,inm),xhis] = hist(nullDistributionP(:,inm),linspace(22,34,200));
y(:,inm) = y(:,inm)./sum(y(:,inm));
% Distribution deterministic
[woy(:,inm),woxhis] = hist(nullDistributionD(:,inm),linspace(22,34,200));
woy(:,inm) = woy(:,inm)./sum(woy(:,inm));
end
y_m = mean(y,2);
y_e = [y_m, y_m] + 2*[-std(y,[],2),std(y,[],2)];
ywo_m = mean(woy,2);
ywo_e = [ywo_m, ywo_m] + 2*[-std(woy,[],2),std(woy,[],2)];
%% Compute the strength of evidence.
dprime = diff([mean(nullDistributionP,1);mean(nullDistributionD,1)]) ...
./sqrt(sum([std(nullDistributionP,[],1);std(nullDistributionD,[],1)].^2,1));
%% Plot the null distribution and the empirical difference
distributionPlotRMSE(y_e,ywo_e,dprime,xhis,woxhis)
end
%------------------------------------%
function scatterPlotRMSE(det,prob)
figNameRmse = sprintf('prob_vs_det_rmse_common_voxels_map');
fhRmseMap = mrvNewGraphWin(figNameRmse);
[ymap,x] = hist3([det.rmse;prob.rmse]',{[10:1:70], [10:1:70]});
ymap = ymap./length(prob.rmse);
sh = imagesc(flipud(log10(ymap)));
cm = colormap(flipud(hot)); view(0,90);
axis('square')
set(gca, ...
'xlim',[1 length(x{1})],...
'ylim',[1 length(x{1})], ...
'ytick',[1 (length(x{1})/2) length(x{1})], ...
'xtick',[1 (length(x{1})/2) length(x{1})], ...
'yticklabel',[x{1}(end) x{1}(round(end/2)) x{1}(1)], ...
'xticklabel',[x{1}(1) x{1}(round(end/2)) x{1}(end)], ...
'tickdir','out','ticklen',[.025 .05],'box','off', ...
'fontsize',16,'visible','on')
hold on
plot3([1 length(x{1})],[length(x{1}) 1],[max(ymap(:)) max(ymap(:))],'k-','linewidth',1)
ylabel('Deterministic_{rmse}','fontsize',12)
xlabel('Probabilistic_{rmse}','fontsize',12)
cb = colorbar;
tck = get(cb,'ytick');
set(cb,'yTick',[min(tck) mean(tck) max(tck)], ...
'yTickLabel',round(1000*10.^[min(tck),...
mean(tck), ...
max(tck)])/1000, ...
'tickdir','out','ticklen',[.025 .05],'box','on', ...
'fontsize',16,'visible','on')
end
%---------------------------------------%
function distributionPlotRMSE(y_e,ywo_e,dprime,xhis,woxhis)
h1.ylim = [0 0.6];
h1.xlim = [22,34];
h1.ytick = [0 0.3 0.6];
h1.xtick = [28 30 32 34];
h2.ylim = [0 0.4];
h2.xlim = [28,32];
h2.ytick = [0 0.2 0.4];
h2.xtick = [28 30 32];
histcolor{1} = [0 0 0];
histcolor{2} = [.95 .6 .5];
figName = sprintf('Test_PROB_DET_model_rmse_mean_HIST');
fh = mrvNewGraphWin(figName);
patch([xhis,xhis],y_e(:),histcolor{1},'FaceColor',histcolor{1},'EdgeColor',histcolor{1});
hold on
patch([woxhis,woxhis],ywo_e(:),histcolor{2},'FaceColor',histcolor{2},'EdgeColor',histcolor{2});
set(gca,'tickdir','out', ...
'box','off', ...
'ylim',[0 .6], ...
'xlim',[28 34], ...
'xtick',[28 30 32 34], ...
'ytick',[0 .3 .6], ...
'fontsize',16)
ylabel('Probability','fontsize',16)
xlabel('rmse','fontsize',16')
title(sprintf('Strength of evidence:\n mean %2.3f - std %2.3f',mean(dprime),std(dprime)), ...
'FontSize',16)
legend({'Probabilistic','Deterministic'})
end