forked from francopestilli/life_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths_test_statistics_measures.m
299 lines (259 loc) · 12.2 KB
/
s_test_statistics_measures.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
function s_test_statistics_measures
% Test the variability of S and K-L or Jeffrey as function of:
% - Effect size, namely he difference between the distribution of errors
% with and without the lesion
% - number of voxels, the numer of observations sustaining the hypothesis
%
% Copyright Franco Pestilli Stanford University 2014
if notDefined('saveDir'), savedir = fullfile('/marcovaldo/frk/Dropbox','pestilli_etal_revision',mfilename);end
nBoots = 500;
nvox= [ 2^13 2^12 2^11 2^10 2^9 2^7 2^6 2^5 2^4];
nboots = 10000;
nmontecarlo = 4;
% We set up two idealized RMSE distributions one for the lesioned and one for the ulesioned connectome
% We change the number of voxels in each distribution and measure the
% resulting indices (KL, J and S).
%
% The we repeate the same operation for a different problem. Tis time the
% distributions have a different effect size (meaning lesioning has a
% different impact on the rmse.
% RMSE distributions ar emodelled as Rician distributions.
% Lesioned RMSE distrbution
vu = 80;% 20
su = 100;% 20
% Unlsioned RMSE distrbution
vl = 80;% 100
sl = [300, 250, 200, 150, 100];% Try s = 20 vs 100 for an example of how two similar means generate very different K-
colors = copper(8);
colors = colors(4:end,:);
for is = 1:length(sl)
for invx=1:length(nvox)
fprintf('[%s] nvoxel: %i\n',mfilename,nvox(invx))
for ibt = 1:nBoots
fprintf('[%s] boot num %i\n',mfilename,ibt)
% Simulate a couple of RMSE distributions
unlesioned_rmseall = ricernd(vu*ones(1, nvox(invx)), su);
lesioned_rmseall = ricernd(vl*ones(1, nvox(invx)), sl(is));
urmse(ibt,is) = mean(unlesioned_rmseall);
lrmse(ibt,is) = mean(lesioned_rmseall);
se.xrange(1) = 0;
se.xrange(2) = 1000;
se.nbins = 60;
se.bins = linspace(se.xrange(1),se.xrange(2),se.nbins);
[se.lesion.hist, se.lesion.xhist] = hist(lesioned_rmseall,se.bins);
se.lesion.hist = se.lesion.hist ./ sum(se.lesion.hist);
[se.nolesion.hist, se.nolesion.xhist] = hist(unlesioned_rmseall,se.bins);
se.nolesion.hist = se.nolesion.hist ./ sum(se.nolesion.hist);
% KL
tmp = se.nolesion.hist .* log2( (se.nolesion.hist) ./ (se.lesion.hist + eps) );
tmp(isnan(tmp)) = 0;
se.value(ibt) = nansum(tmp);clear tmp
% Jeffrey
tmp = se.nolesion.hist .* log2( (se.nolesion.hist) ./ ((se.lesion.hist + se.lesion.hist + eps)./2) ) + ...
se.lesion.hist .* log2( (se.lesion.hist) ./ ((se.lesion.hist + se.lesion.hist + eps)./2) );
tmp(isnan(tmp)) = 0;
se.jvalue(ibt) = nansum(tmp);clear tmp
% EMD
[~,tmp_em(ibt)] = emd(se.nolesion.xhist',se.lesion.xhist',se.nolesion.hist',se.lesion.hist',@gdf);
end
se.em.name = sprintf('Earth Mover''s distance: http://en.wikipedia.org/wiki/Earth_mover''s_distance');
se.em.mean(invx,is) = mean(tmp_em);
se.em.std(invx,is) = std(tmp_em);
se.kl.name = sprintf('Kullback–Leibler divergence: http://en.wikipedia.org/wiki/Kullback-Leibler_divergence');
se.kl.mean(invx,is) = mean(se.value);
se.kl.std(invx,is) = std(se.value);
se.j.name = sprintf('Jeffrey''s divergence: http://en.wikipedia.org/wiki/Divergence_(statistics)');
se.j.mean(invx,is) = mean(se.jvalue);
se.j.std(invx,is) = std(se.jvalue);
s = compute_s(lesioned_rmseall, unlesioned_rmseall,nboots,nmontecarlo,[]);
se.s.name = sprintf('strength of evidence, d-prime: http://en.wikipedia.org/wiki/Effect_size');
se.s.mean(invx,is) = s.mean;
se.s.std(invx,is) = s.std;
if invx == 1
% Make a plot
fh(1) = figure('name',sprintf('%s_distributions_effect_size%i',mfilename, is),'color','w');
plot(se.lesion.xhist,se.lesion.hist,'-','color',colors(is,:),'linewidth',2); hold on
plot(se.nolesion.xhist,se.nolesion.hist,'k-','linewidth',2)
title(sprintf('mean RMSE \n no-lesion %2.3f\ | lesion %2.2f',mean(unlesioned_rmseall),mean(lesioned_rmseall)),'fontsize',16)
ylabel('Probability', 'fontsize',14);xlabel('RMSE', 'fontsize',14)
if is == 1, legend({'Lesion','nvoxolesion'},'fontsize',14);end
axis square
set(gca,'box','off','xtick',[0 500 1000],'ytick',[0 .06 .12],'xlim',[0 1000],'ylim',[0 .125], ...
'tickdir', 'out', 'ticklength', [0.025 0])
drawnow
saveFig(fh(1),fullfile(savedir, sprintf('%s_distributions_effect_size%i',mfilename, is)),1)
end
end
end
fh(2) = figure('name',sprintf('%s_S',mfilename),'color','w');
hold on
for is = 1:size(se.s.mean,2)
plot(nvox',se.s.mean(:,is),'-','color',colors(is,:),'linewidth',2);
hold on
plot([nvox',nvox']',[se.s.mean(:,is),se.s.mean(:,is)]' + [-se.s.std(:,is),se.s.std(:,is)]','-','color',colors(is,:),'linewidth',2);
end
ylabel('S', 'fontsize',14);xlabel('number of voxels', 'fontsize',14)
set(gca,'box','off', 'fontsize',14,'tickdir','out', 'ticklength', [0.025 0],'xscale','log','xtick',fliplr(nvox))
axis square
saveFig(fh(2),fullfile(savedir, sprintf('%s_S',mfilename)),1)
fh(3) = figure('name',sprintf('%s_KL',mfilename),'color','w');
hold on
for is = 1:size(se.s.mean,2)
plot(nvox',se.kl.mean(:,is),'-','color',colors(is,:),'linewidth',2);
hold on
plot([nvox',nvox']',[se.kl.mean(:,is),se.kl.mean(:,is)]' + [-se.kl.std(:,is),se.kl.std(:,is)]','-','color',colors(is,:),'linewidth',2);
end
ylabel('K-L', 'fontsize',14);xlabel('number of voxels', 'fontsize',14)
set(gca,'box','off', 'fontsize',14,'tickdir','out', 'ticklength', [0.025 0],'xscale','log','xtick',fliplr(nvox))
axis square
saveFig(fh(3),fullfile(savedir, sprintf('%s_KL',mfilename)),1)
fh(4) = figure('name',sprintf('%s_JEFFREY',mfilename),'color','w');
hold on
for is = 1:size(se.s.mean,2)
plot(nvox',se.j.mean(:,is),'-','color',colors(is,:),'linewidth',2);
hold on
plot([nvox',nvox']',[se.j.mean(:,is),se.j.mean(:,is)]' + [-se.j.std(:,is),se.j.std(:,is)]','-','color',colors(is,:),'linewidth',2);
end
ylabel('Jeffrey', 'fontsize',14);xlabel('number of voxels', 'fontsize',14)
set(gca,'box','off', 'fontsize',14,'tickdir','out', 'ticklength', [0.025 0],'xscale','log','xtick',fliplr(nvox))
axis square
saveFig(fh(4),fullfile(savedir, sprintf('%s_JEFFREY',mfilename)),1)
fh(5) = figure('name',sprintf('%s_EMD',mfilename),'color','w');
hold on
for is = 1:size(se.s.mean,2)
plot(nvox',se.em.mean(:,is),'-','color',colors(is,:),'linewidth',2);
hold on
plot([nvox',nvox']',[se.em.mean(:,is),se.em.mean(:,is)]' + [-se.em.std(:,is),se.em.std(:,is)]','-','color',colors(is,:),'linewidth',2);
end
ylabel('EMD', 'fontsize',14);xlabel('number of voxels', 'fontsize',14)
set(gca,'box','off', 'fontsize',14,'tickdir','out', 'ticklength', [0.025 0],'xscale','log','xtick',fliplr(nvox))
axis square
saveFig(fh(5),fullfile(savedir, sprintf('%s_EMD',mfilename)),1)
fh(6) = figure('name',sprintf('%s_COLORBAR',mfilename),'color','w');
colormap(colors)
colorbar('ytick',[1:size(colors,1)]+.5,'yticklabel',round([mean(lrmse,1) - mean(urmse,1) ]))
set(gca, 'fontsize',14,'tickdir','out', 'ticklength', [0.025 0])
saveFig(fh(6),fullfile(savedir, sprintf('%s_COLORBAR',mfilename)),1)
% Save the results
save(fullfile(savedir, 'results_1'),'se')
keyboard
end % Main function
function s = compute_s(lesioned_rmseall, unlesioned_rmseall,nboots,nmontecarlo,sbpl)
disp('computing S ...')
% The following is the code for the bootstrap test on the MEAN rmse
sizeunlesioned = length(unlesioned_rmseall);
nullDistributionW = nan(nboots,nmontecarlo);
nullDistributionWO = nan(nboots,nmontecarlo);
min_x = floor(mean([unlesioned_rmseall]) - mean([unlesioned_rmseall])*.05);
max_x = ceil(mean([lesioned_rmseall]) + mean([lesioned_rmseall])*.05);
min_x = min([min_x,max_x]);
max_x = max([max_x,min_x]);
for inm = 1:nmontecarlo
parfor ibt = 1:nboots
nullDistributionW(ibt,inm) = mean(randsample(unlesioned_rmseall, sizeunlesioned,true));
nullDistributionWO(ibt,inm) = mean(randsample(lesioned_rmseall,sizeunlesioned,true));
end
% Distribution unlesioned
[y(:,inm),xhis] = hist(nullDistributionW(:,inm),linspace(min_x,max_x,200));
y(:,inm) = y(:,inm)./sum(y(:,inm));
% Distribution lesioned
[woy(:,inm),woxhis] = hist(nullDistributionWO(:,inm),linspace(min_x,max_x,200));
woy(:,inm) = woy(:,inm)./sum(woy(:,inm));
end
y_m = mean(y,2);
y_e = [y_m, y_m] + 2*[-std(y,[],2),std(y,[],2)];
ywo_m = mean(woy,2);
ywo_e = [ywo_m, ywo_m] + 2*[-std(woy,[],2),std(woy,[],2)];
if ~isempty(sbpl)
% Plot the null distribution and the empirical difference
subplot(2,3,sbpl);
patch([xhis,xhis],y_e(:),'b','FaceColor',[.67 .86 .96],'EdgeColor',[.67 .86 .96]); % Distribution as the +/- 2SD
hold on
patch([woxhis,woxhis],ywo_e(:),[.97 .66 .76],'FaceColor',[.97 .66 .76],'EdgeColor',[.97 .66 .76]); % Distribution as the +/- 2SD
set(gca,'tickdir','out', ...
'box','off', ...
'ylim',[ 0.2], ...
'xlim',[min_x,max_x], ...
'ytick',[0 0.1 0.2], ...
'xtick',round(linspace(min_x,max_x,4)), ...
'fontsize',16)
ylabel('Probability','fontsize',16)
xlabel('rmse','fontsize',16')
end
% (3) Compute the probability that the empirical difference (1) was
% observed by chance given th data, by looking at the percentile of the
% empirical difference in the Nul distribution (2).
s.mean = mean(diff([mean(nullDistributionW,1); ...
mean(nullDistributionWO,1)])./sqrt(sum([std(nullDistributionW,[],1);std(nullDistributionWO,[],1)].^2,1)));
s.std = std(diff([mean(nullDistributionW,1); ...
mean(nullDistributionWO,1)])./sqrt(sum([std(nullDistributionW,[],1);std(nullDistributionWO,[],1)].^2,1)));
if ~isempty(sbpl)
title(sprintf('S %2.3f',(s)), 'FontSize',16);
end
end
function r = ricernd(v, s)
%RICERND Random samples from the Rice/Rician probability distribution.
% r = ricernd(v, s) returns random sample(s) from the Rice (aka Rician)
% distribution with parameters v and s.
% (either v or s may be arrays, if both are, they must match in size)
%
% R ~ Rice(v, s) if R = sqrt(X^2 + Y^2), where X ~ nvox(v*cos(a), s^2) and
% Y ~ nvox(v*sin(a), s^2) are independent normal distributions (any real a).
% nvoxote that v and s are *not* the mean and standard deviation of R!
%
% The size of Y is the common size of the input arguments. A scalar
% input functions as a constant matrix of the same size as the other
% inputs.
%
% nvoxote, to add Rician noise to data, with given s and data-dependent v:
% new = ricernd(old, s);
%
% Reference: http://en.wikipedia.org/wiki/Rice_distribution (!)
%
% Example:
%
% % Compare histogram of random samples with theoretical PDF:
% v = 4; s = 3; nvox= 1000;
% r = ricernd(v*ones(1, nvox), s);
% c = linspace(0, ceil(max(r)), 20);
% w = c(2); % histogram bin-width
% h = histc(r, c); bar(c, h, 'histc'); hold on
% xl = xlim; x = linspace(xl(1), xl(2), 100);
% plot(x, nvox*w*ricepdf(x, v, s), 'r');
%
% See also RICEPDF, RICESTAT, RICEFIT
% Missing (?) 'See also's RICECDF, RICEInvoxV, RICELIKE
% Inspired by normpdf from the MATLAB statistics toolbox
% Copyright 2008 Ged Ridgway (Ged at cantab dot net)
if isscalar(v)
dim = size(s);
elseif isscalar(s)
dim = size(v);
elseif all(isequal(size(v), size(s)))
% (both non-scalar, matching)
dim = size(v); % == size(s)
else
error('ricernd:InputSizeMismatch','Sizes of s and v inconsistent.')
end
x = s .* randn(dim) + v;
y = s .* randn(dim);
r = sqrt(x.^2 + y.^2);
end
%-------------------------------%
function saveFig(h,figName,eps)
if ~exist( fileparts(figName), 'dir'), mkdir(fileparts(figName));end
fprintf('[%s] saving figure... \n%s\n',mfilename,figName);
switch eps
case {0,'jpeg'}
eval(sprintf('print(%s, ''-djpeg90'', ''-opengl'', ''%s'')', num2str(h),[figName,'.jpg']));
case {1,'eps'}
eval(sprintf('print(%s, ''-cmyk'', ''-painters'',''-depsc2'',''-tiff'',''-r500'' , ''-noui'', ''%s'')', num2str(h),[figName,'.eps']));
case 'png'
eval(sprintf('print(%s, ''-dpng'',''-r500'', ''%s'')', num2str(h),[figName,'.png']));
case 'tiff'
eval(sprintf('print(%s, ''-dtiff'',''-r500'', ''%s'')', num2str(h),[figName,'.tif']));
case 'bmp'
eval(sprintf('print(%s, ''-dbmp256'',''-r500'', ''%s'')', num2str(h),[figName,'.bmp']));
otherwise
end
end