-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy patharguments.py
43 lines (40 loc) · 1.31 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument(
"--maxlen_train",
type=int,
default=30,
help="Maximum number of tokens in the input sequence during training.",
)
parser.add_argument(
"--maxlen_val",
type=int,
default=50,
help="Maximum number of tokens in the input sequence during evaluation.",
)
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size during training."
)
parser.add_argument("--lr", type=float, default=2e-5, help="Learning rate for Adam.")
parser.add_argument("--num_eps", type=int, default=2, help="Number of training epochs.")
parser.add_argument(
"--num_threads",
type=int,
default=1,
help="Number of threads for collecting the datasets.",
)
parser.add_argument(
"--output_dir",
type=str,
default="my_model",
help="Where to save the trained model, if relevant.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
default=None,
help="""Name of or path to the pretrained/trained model.
For training choose between bert-base-uncased, albert-base-v2, distilbert-base-uncased etc.
For evaluating/analyzing/server choose between barissayil/bert-sentiment-analysis-sst and paths to the models you have trained previously.""",
)
args = parser.parse_args()