-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathx_function_full_subsets_gam_v1.11.R
564 lines (517 loc) · 26.8 KB
/
x_function_full_subsets_gam_v1.11.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
full.subsets.gam=function(use.dat,
test.fit,
pred.vars.cont=NA,
pred.vars.fact=NA,
cyclic.vars=NA,
linear.vars=NA,
factor.smooth.interactions=pred.vars.fact,
factor.factor.interactions=F,
smooth.smooth.interactions=F,
cov.cutoff=0.28,
cor.matrix=NA,
max.predictors=3,
k=5,
bs.arg="'cr'",
null.terms="",
max.models=500,
parallel=F,
n.cores=4,
r2.type="r2.lm.est",
report.unique.r2=F,
factor.interactions="previous.arg",
smooth.interactions="previous.arg",
size="previous.arg"){
# make sure use.dat is a data.frame
use.dat=as.data.frame(use.dat)
# manage previous version arguments
if(factor.interactions!="previous.arg"){
factor.factor.interactions=factor.interactions
warning('Argument factor.interactions has been replaced with factor.factor.interactions.
Please update your code as usage of factor.interactions will not be supported in
future versions.')
}
if(is.na(smooth.interactions)==T){
factor.smooth.interactions=smooth.interactions
warning('Argument smooth.interactions has been replaced with factor.smooth.interactions.
Please update your code as usage of smooth.interactions will not be supported in
future versions.')}else{if(smooth.interactions!="previous.arg"){
factor.smooth.interactions=smooth.interactions
warning('Argument smooth.interactions has been replaced with factor.smooth.interactions.
Please update your code as usage of smooth.interactions will not be supported in
future versions.')
}}
if(size!="previous.arg"){
size=max.predictors
warning('Argument size has been replaced with max.predictors.
Please update your code as usage of size will not be supported in
future versions.')
}
# make an "intercept" term for the null model
use.dat$intercept=1
interaction.terms=NA
linear.interaction.terms=NA
all.predictors=unique(na.omit(c(pred.vars.cont,pred.vars.fact,linear.vars)))
included.vars=all.predictors
# check the null model will fit
if(nchar(null.terms)>0){
null.formula=as.formula(paste("~ intercept-1",null.terms,sep="+"))}else{
null.formula=as.formula("~ intercept-1")}
if(length(grep("dsm",class(test.fit)))>0){
null.formula=as.formula(paste("~1",null.terms,sep="+"))
null.fit=try(update(test.fit,formula=null.formula),silent=T)
}else{
null.fit=try(update(test.fit,formula=null.formula,data=use.dat),silent=T)}
if(class(null.fit)[1]=="try-error"){
stop(paste("Null model not successfully fitted, please check your inputs.
If there are no random effects try using 'gam' instead of 'uGamm'
in your test.fit model call.",
" ",
"The following error message was provided: ",
" ",
null.fit, ""))}
# check for missing predictor values
if(max(is.na(use.dat[,all.predictors]))==1){
stop("Predictor variables contain NA and AICc/BIC comparisons are invalid.
Remove rows with NA from the input data or interpolate missing predictors.")}
# make the interaction terms vector
interaction.terms=NA
# if there are factors
if(length(na.omit(pred.vars.fact))>0){
# if there are two or more factors
if(length(na.omit(pred.vars.fact))>1){
# make all the interactions between factors
if(class(factor.factor.interactions)=="logical"){
if(factor.factor.interactions==T){
if(length(pred.vars.fact)<2){
stop("You have less than 2 factors. Please reset 'factor.factor.interactions' to 'False'")}
factor.correlations=check.correlations(use.dat[,pred.vars.fact])
fact.combns=list()
fact.cmbns.max.predictors=max.predictors
if(max.predictors>length(pred.vars.fact)){fact.cmbns.max.predictors=length(pred.vars.fact)}
for(i in 2:fact.cmbns.max.predictors){
if(i<=length(pred.vars.fact)){
fact.combns=c(fact.combns,
combn(pred.vars.fact,i,simplify=F)) }}
# check which were correlated
fact.combns=lapply(fact.combns,FUN=function(x){
row.index=which(match(rownames(factor.correlations),x)>0)
col.index=which(match(colnames(factor.correlations),x)>0)
cor.mat.m=factor.correlations[row.index,col.index]
out=x
if(max(abs(cor.mat.m[upper.tri(cor.mat.m)]))>cov.cutoff){out=NA}
return(out)})
fact.combns[which(is.na(fact.combns))]=NULL
tt=data.frame(lapply(fact.combns,FUN=function(x){
do.call("paste",as.list(use.dat[,x]))}))
factor.interaction.terms=unlist(lapply(fact.combns,FUN=paste,collapse=".I."))
colnames(tt)=factor.interaction.terms
use.dat=cbind(use.dat,tt)
pred.vars.fact=c(pred.vars.fact,factor.interaction.terms)
}
}
# make only specified interactions between factors
if(class(factor.factor.interactions)=="character"){
if(length(factor.factor.interactions)<2){
stop("You specified less than 2 factors as factor.factor.interactions.")}
if(max(is.na(match(factor.factor.interactions,colnames(use.dat))))==1){
stop("Not all specified factor.factor.interactions are supplied in use.dat")}
factor.correlations=check.correlations(use.dat[,factor.factor.interactions])
#if(min(factor.correlations,na.rm=T)>cov.cutoff){
# stop("All factors have a correlation higher than your cutoff value")}
if(length(which(factor.correlations<cov.cutoff))>1){
fact.combns=list()
fact.cmbns.max.predictors=max.predictors
if(max.predictors>length(factor.factor.interactions)){fact.cmbns.max.predictors=length(factor.factor.interactions)}
for(i in 2:fact.cmbns.max.predictors){
if(i<=length(factor.factor.interactions)){
fact.combns=c(fact.combns,
combn(factor.factor.interactions,i,simplify=F)) }}
# check which were correlated
fact.combns=lapply(fact.combns,FUN=function(x){
row.index=which(match(rownames(factor.correlations),x)>0)
col.index=which(match(colnames(factor.correlations),x)>0)
cor.mat.m=factor.correlations[row.index,col.index]
out=x
if(max(abs(cor.mat.m[upper.tri(cor.mat.m)]))>cov.cutoff){out=NA}
return(out)})
fact.combns[which(is.na(fact.combns))]=NULL
tt=data.frame(lapply(fact.combns,FUN=function(x){
do.call("paste",as.list(use.dat[,x]))}))
factor.interaction.terms=unlist(lapply(fact.combns,FUN=paste,collapse=".I."))
colnames(tt)=factor.interaction.terms
use.dat=cbind(use.dat,tt)
pred.vars.fact=c(pred.vars.fact,factor.interaction.terms)
}
}
}
# make sure the factors are factors
for(f in 1:length(pred.vars.fact)){
use.dat[,pred.vars.fact[f]]=factor(use.dat[,pred.vars.fact[f]])}
# check which factors should be included as interactions with the smoothers
# for if only factors are specified (including default)
if(class(factor.smooth.interactions)=="character"){
factor.smooth.interactions=pred.vars.fact[which(unlist(lapply(strsplit(pred.vars.fact,
split=".I."),function(x){
max(is.na(match(x,factor.smooth.interactions)))}))==0)]
# make the interaction terms between the factors and continuous predictors
if(length(na.omit(factor.smooth.interactions))>0){
all.interactions=expand.grid(pred.vars.cont,factor.smooth.interactions)
interaction.terms=paste(all.interactions$Var1,all.interactions$Var2,sep=".by.")
# now interactions between linear continous predictors and factors
if(length(na.omit(linear.vars))>0){
linear.interactions=expand.grid(linear.vars,factor.smooth.interactions)
linear.interaction.terms=paste(linear.interactions$Var1,linear.interactions$Var2,
sep=".t.")}
}
}
if(class(factor.smooth.interactions)=="list"){
cont.var.interactions=factor.smooth.interactions$cont.vars
linear.var.interactions=factor.smooth.interactions$linear.vars
factor.smooth.interactions=factor.smooth.interactions$fact.vars
factor.smooth.interactions=pred.vars.fact[which(unlist(lapply(strsplit(pred.vars.fact,
split=".I."),function(x){
max(is.na(match(x,factor.smooth.interactions)))}))==0)]
# make the interaction terms between the factors and continuous predictors
if(length(na.omit(factor.smooth.interactions))>0){
all.interactions=expand.grid(cont.var.interactions,factor.smooth.interactions)
interaction.terms=paste(all.interactions$Var1,all.interactions$Var2,sep=".by.")
# now interactions between linear continous predictors and factors
if(length(na.omit(linear.var.interactions))>0){
linear.interactions=expand.grid(linear.var.interactions,factor.smooth.interactions)
linear.interaction.terms=paste(linear.interactions$Var1,linear.interactions$Var2,
sep=".t.")}
}
}
}
# if we want smooth.smooth interactions
smooth.smooth.interaction.terms=NA
# for interactions amonst all continuous predictors
if(class(smooth.smooth.interactions)=="logical"){
if(smooth.smooth.interactions==T){
if(length(pred.vars.cont)<2){
stop("You have less than 2 continuous predictors you wish interactions for.
Please reset 'smooth.smooth.interactions' to 'False'")}
continuous.correlations=check.correlations(use.dat[,pred.vars.cont])
cont.combns=list()
cont.cmbns.max.predictors=max.predictors
if(max.predictors>length(pred.vars.cont)){cont.cmbns.max.predictors=length(pred.vars.cont)}
for(i in 2:cont.cmbns.max.predictors){
if(i<=length(pred.vars.cont)){
cont.combns=c(cont.combns,
combn(pred.vars.cont,i,simplify=F)) }}
# check which were correlated
cont.combns=lapply(cont.combns,FUN=function(x){
row.index=which(match(rownames(continuous.correlations),x)>0)
col.index=which(match(colnames(continuous.correlations),x)>0)
cor.mat.m=continuous.correlations[row.index,col.index]
out=x
if(max(abs(cor.mat.m[upper.tri(cor.mat.m)]))>cov.cutoff){out=NA}
return(out)})
cont.combns[which(is.na(cont.combns))]=NULL
tt=data.frame(lapply(cont.combns,FUN=function(x){
do.call("paste",as.list(use.dat[,x]))}))
smooth.smooth.interaction.terms=unlist(lapply(cont.combns,FUN=paste,collapse=".te."))
colnames(tt)=smooth.smooth.interaction.terms
}
}
# for only specific interactions amonst continuous predictors
if(class(smooth.smooth.interactions)=="character"){
if(length(smooth.smooth.interactions)<2){
stop("You specified less than 2 variables as smooth.smooth.interactions.")}
if(max(is.na(match(smooth.smooth.interactions,colnames(use.dat))))==1){
stop("Not all specified smooth.smooth.interactions are supplied in use.dat")}
continuous.correlations=check.correlations(use.dat[,smooth.smooth.interactions])
cont.combns=list()
cont.cmbns.max.predictors=max.predictors
if(max.predictors>length(smooth.smooth.interactions)){cont.cmbns.max.predictors=length(smooth.smooth.interactions)}
for(i in 2:cont.cmbns.max.predictors){
if(i<=length(smooth.smooth.interactions)){
cont.combns=c(cont.combns,
combn(smooth.smooth.interactions,i,simplify=F)) }}
# check which were correlated
cont.combns=lapply(cont.combns,FUN=function(x){
row.index=which(match(rownames(continuous.correlations),x)>0)
col.index=which(match(colnames(continuous.correlations),x)>0)
cor.mat.m=continuous.correlations[row.index,col.index]
out=x
if(max(abs(cor.mat.m[upper.tri(cor.mat.m)]))>cov.cutoff){out=NA}
return(out)})
cont.combns[which(is.na(cont.combns))]=NULL
tt=data.frame(lapply(cont.combns,FUN=function(x){
do.call("paste",as.list(use.dat[,x]))}))
smooth.smooth.interaction.terms=unlist(lapply(cont.combns,FUN=paste,collapse=".te."))
colnames(tt)=smooth.smooth.interaction.terms
}
all.predictors=na.omit(unique(c(all.predictors,pred.vars.fact)))
# calculate a correlation matrix between all predictors
cc=check.correlations(use.dat[,all.predictors],parallel=parallel,n.cores=n.cores)
if(length(cor.matrix)==1){
cor.matrix=cc
# replace NA's with zero.
cor.matrix[which(cor.matrix=="NaN")]=0
cor.matrix[which(is.na(cor.matrix)==T)]=0}else{
# check if the user defined matrix has the same rownames and colnames
check.predictors=c(match(all.predictors,colnames(cor.matrix)),
match(all.predictors,rownames(cor.matrix)))
missing.predictors=unique(rep(all.predictors,2)[which(is.na(check.predictors))])
if(length(missing.predictors)>0){
stop(paste("Supplied cor.matrix is missing required predictors: ",
paste(missing.predictors,collapse=", "),".",sep=""))}
}
# make all possible combinations
if(length(na.omit(c(pred.vars.cont,
pred.vars.fact)))<max.predictors){
stop("Model max.predictors is greater than the number of predictors.")}
all.mods=list()
for(i in 1:max.predictors){
all.mods=c(all.mods,
combn(na.omit(c(pred.vars.cont,pred.vars.fact,
linear.vars,
interaction.terms,
linear.interaction.terms,
smooth.smooth.interaction.terms)),
i,simplify=F))
}
# remove redundant models
use.mods=all.mods
for(m in 1:length(all.mods)){
mod.m=all.mods[[m]]
mod.terms=unlist(strsplit(unlist(strsplit(unlist(strsplit(mod.m,
split=".by.",fixed=T)),
split=".t.",fixed=T)),
split=".te.",fixed=T))
n.vars.m=unique(unlist(strsplit(unlist(strsplit(unlist(strsplit(unlist(strsplit(mod.m,
split=".by.",fixed=T)),
split=".I.",fixed=T)),
split=".t.",fixed=T)),
split=".te.",fixed=T)))
cont.vars=na.omit(na.omit(c(pred.vars.cont,linear.vars))[match(mod.terms,
na.omit(c(pred.vars.cont,linear.vars)))])
fact.vars=unique(na.omit(pred.vars.fact[match(mod.terms,pred.vars.fact)]))
# if there are factor vars
if(length(fact.vars)>0){
# check that any "by" factor vars are accompanied by a + term in its owns right
if(max(is.na(match(fact.vars,mod.m)))==1){use.mods[[m]]=NA}}
# remove the model if the predictors are correlated
if(length(mod.terms)>1){
row.index=which(match(rownames(cor.matrix),unique(mod.terms))>0)
col.index=which(match(colnames(cor.matrix),unique(mod.terms))>0)
cor.mat.m=cor.matrix[row.index,col.index]
if(max(abs(cor.mat.m[upper.tri(cor.mat.m)]))>cov.cutoff){use.mods[[m]]=NA}
if(max(abs(cor.mat.m[lower.tri(cor.mat.m)]))>cov.cutoff){use.mods[[m]]=NA}
}
# remove the model if there are more than the number of terms specified in "max.predictors"
if(length(n.vars.m)>max.predictors){use.mods[[m]]=NA}
# remove the models if a continuous predictor occurs as a by, or a te, and as a single term
if(length(cont.vars)>length(unique(cont.vars))){use.mods[[m]]=NA}
}
use.mods[which(is.na(use.mods))]=NULL
# now make the models into gamm formula
if(nchar(null.terms)==0){# if there is no bs='re' random effect random effect
# or other null term in the null model
mod.formula=list(as.formula("~ intercept-1"))}
if(nchar(null.terms)>0){# to add a bs='re' random effect
mod.formula=list(null.formula)}
for(m in 1:length(use.mods)){
mod.m=use.mods[[m]]
cont.smooths=mod.m[which(match(mod.m,setdiff(pred.vars.cont,linear.vars))>0)]
by.smooths=mod.m[grep(".by.",mod.m,fixed=T)]
te.smooths=mod.m[grep(".te.",mod.m,fixed=T)]
factor.terms=mod.m[which(match(mod.m,pred.vars.fact)>0)]
linear.terms=mod.m[which(match(mod.m,linear.vars)>0)]
linear.interaction.terms=mod.m[grep(paste(linear.vars,".t.",sep=""),mod.m,fixed=T)]
all.terms.vec=character()
if(length(cont.smooths>0)){all.terms.vec=c(all.terms.vec,
paste("s(",cont.smooths,",k=",k,",bs=",bs.arg,")",sep=""))}
if(length(by.smooths>0)){all.terms.vec=c(all.terms.vec,
paste("s(",gsub(".by.",",by=",by.smooths,fixed=T),",k=",k,",bs=",bs.arg,")",sep=""))}
if(length(te.smooths>0) & class(test.fit)[[1]]!="gamm4"){all.terms.vec=c(all.terms.vec,
paste("te(",gsub(".te.",",",te.smooths,fixed=T),",k=",k,",bs=",bs.arg,")",sep=""))}
if(length(te.smooths>0) & class(test.fit)[[1]]=="gamm4"){all.terms.vec=c(all.terms.vec,
paste("t2(",gsub(".te.",",",te.smooths,fixed=T),",k=",k,",bs=",bs.arg,")",sep=""))}
if(length(linear.interaction.terms>0)){all.terms.vec=c(all.terms.vec,
gsub(".t.","*",linear.interaction.terms,fixed=T))}
if(length(factor.terms>0)){all.terms.vec=c(all.terms.vec,factor.terms)}
if(length(linear.terms>0)){all.terms.vec=c(all.terms.vec,linear.terms)}
if(max(is.na(cyclic.vars))!=1){
for(r in 1:length(cyclic.vars)){
for(v in 1:length(all.terms.vec)){
if(length(grep(cyclic.vars[r],all.terms.vec[v]))>0){
all.terms.vec[v]=gsub(paste("bs=",bs.arg,sep=""),"bs='cc'",all.terms.vec[v])
}}}}
for(v in 1:length(all.terms.vec)){
if(length(grep("te(",all.terms.vec[v],fixed=T))>0){
bs.arg.v=c("","")
smooth.vars.v=unlist(strsplit(gsub("te(","",all.terms.vec[v],fixed=T),split=","))[1:2]
var.type.vec=unlist(lapply(smooth.vars.v,FUN=function(x){match(x,cyclic.vars)}))
bs.arg.v[which(is.na(var.type.vec))]=bs.arg
bs.arg.v[which(var.type.vec>0)]="'cc'"
bs.arg.v=paste("bs=c(",paste0(bs.arg.v,collapse=","),")",sep="")
all.terms.vec[v]=gsub("bs='cc'",bs.arg.v,all.terms.vec[v])
all.terms.vec[v]=gsub(paste("bs=",bs.arg,sep=""),bs.arg.v,all.terms.vec[v])
}
}
if(nchar(null.terms)==0){# if there is no bs='re' random effect
# or other null term in the null model
formula.m=as.formula(paste("~",
paste(all.terms.vec,collapse="+")))}
if(nchar(null.terms)>0){#
formula.m=as.formula(paste("~",
paste(c(all.terms.vec,null.terms),collapse="+")))}
mod.formula=c(mod.formula,list(formula.m))
}
names(mod.formula)=c("null",lapply(use.mods,FUN=paste,collapse="+"))
# Is this too many models?
n.mods=length(mod.formula)
time.to.run=round(system.time(try(update(test.fit,formula=mod.formula[[n.mods]],data=use.dat),silent=T))[3]*n.mods/60)
test.mod=try(update(test.fit,formula=mod.formula[[n.mods]],data=use.dat),silent=T)
mod.gbs=round(object.size(test.mod)/1073741824*n.mods,1)
if(n.mods>max.models){
stop(paste("You have ",n.mods," models. If you want to fit all of these you need to
increase 'max.models' from ",max.models,". Otherwise, if the model set
is larger than you can realistically fit, try reducing the number of predictors,
setting the covariance 'cov.cutoff' argument to less than ", cov.cutoff,
"
or setting 'factor.factor.interactions' to FALSE (if you have factors).",sep=""))
}
# now fit the models by updating the test fit (with or without parallel)
pb <- txtProgressBar(max = length(mod.formula), style = 3)
progress <- function(n) setTxtProgressBar(pb, n)
if(parallel==T){
require(doSNOW)
cl=makeCluster(n.cores)
registerDoSNOW(cl)
opts <- list(progress = progress)
out.dat<-foreach(l = 1:length(mod.formula),
.packages=c('mgcv','gamm4','MuMIn'),
.errorhandling='pass',
.options.snow = opts)%dopar%{
if(length(grep("dsm",class(test.fit)))>0){
out=update(test.fit,formula=mod.formula[[l]])}
if(length(grep("dsm",class(test.fit)))==0){
out=update(test.fit,formula=mod.formula[[l]],data=use.dat)}
}
close(pb)
stopCluster(cl)
registerDoSEQ()
}else{
out.dat=list()
for(l in 1:length(mod.formula)){
if(length(grep("dsm",class(test.fit)))>0){
out=try(update(test.fit,formula=mod.formula[[l]]),silent=T)}
if(length(grep("dsm",class(test.fit)))==0){
out=try(update(test.fit,formula=mod.formula[[l]],data=use.dat),silent=T)}
out.dat=c(out.dat,list(out))
setTxtProgressBar(pb,l)
}
}
close(pb)
names(out.dat)=names(mod.formula[1:n.mods])
# find all the models that didn't fit and extract the error messages
# model.success=lapply(lapply(out.dat,FUN=class),FUN=function(x){
# x[1]!="try-error"})
model.success=lapply(lapply(out.dat,FUN=class),FUN=function(x){
length(grep("gam",x))>0})
failed.models=mod.formula[which(model.success==F)]
success.models=out.dat[which(model.success==T)]
if(length(success.models)==0){
stop("None of your models fitted successfully. Please check your input objects.")}
# some functions for extracting model information
require(MuMIn)
wi<<-function(AIC.vals){# This function calculate the Aikaike weights:
# wi=(exp(-1/2*AICc.vals.adj))/Sum.wi=1 to r (exp(-1/2*AICc.vals.adj))
AICc.vals.adj=AIC.vals-min(na.omit(AIC.vals))
wi.den=rep(NA,length(AICc.vals.adj))
for(i in 1:length(AICc.vals.adj)){
wi.den[i]=exp(-1/2*AICc.vals.adj[i])}
wi.den.sum=sum(na.omit(wi.den))
wi=wi.den/wi.den.sum
return(wi)}
# of the successful models, make a table indicating which variables are included
var.inclusions=matrix(0,ncol=length(included.vars),length(success.models))
colnames(var.inclusions)=c(included.vars)
for(m in 1:length(success.models)){
pred.vars.m=unique(
unlist(strsplit(unlist(strsplit(unlist(strsplit(unlist(strsplit(unlist(strsplit(unlist(strsplit(names(success.models)[m],
split="+",fixed=T)),
split=".by.",fixed=T)),
split=".I.",fixed=T)),
split="*",fixed=T)),
split=".t.",fixed=T)),
split=".te.",fixed=T)))
if(pred.vars.m[1]!="null"){var.inclusions[m,pred.vars.m]=1}}
# now make a table of all the model summary data
mod.data.out=data.frame("modname"=names(success.models))
mod.data.out$formula=unlist(lapply(success.models,FUN=function(x){as.character(formula(x)[3])}))
mod.data.out$AICc=unlist(lapply(success.models,FUN=MuMIn::AICc))
mod.data.out$BIC=unlist(lapply(success.models,FUN=BIC))
mod.data.out$delta.AICc=round(mod.data.out$AICc-min(mod.data.out$AICc),3)
mod.data.out$delta.BIC=round(mod.data.out$BIC-min(mod.data.out$BIC),3)
mod.data.out$wi.AICc=round(wi(mod.data.out$AICc),3)
mod.data.out$wi.BIC=round(wi(mod.data.out$BIC),3)
mod.data.out$r2.vals=round(unlist(lapply(success.models,FUN=function(x){
out=NA
if(class(x)[1]=="gam" & r2.type=="dev"){out=summary(x)$dev.expl}
if(class(x)[1]=="gam" & r2.type=="r2"){out=summary(x)$r.sq}
if(class(x)[1]=="gam" & r2.type=="r2.lm.est"){
out=summary(lm(x$y~predict(x)))$r.sq}
if(class(x)[[1]]=="gamm4" & r2.type=="dev"){
out=summary(x$gam)$dev.expl
if(length(out)==0){out=NA}}
if(class(x)[[1]]=="gamm4" & r2.type=="r2"){out=summary(x$gam)$r.sq}
if(class(x)[[1]]=="gamm4" & r2.type=="r2.lm.est"){
out=summary(lm(attributes(x$mer)$frame$y~
predict(x[[1]],re.form=NA,type="response")))$r.sq}
if(is.null(out)){out=NA}
return(out)})),3)
# substract the null model r2 value from each model r2 value
if(report.unique.r2==T){
null.r2=mod.data.out$r2.vals[which(mod.data.out$modname=="null")]
mod.data.out$r2.vals.unique=mod.data.out$r2.vals-null.r2}
# now calculate the summed edf
mod.data.out$edf=round(unlist(lapply(success.models,FUN=function(x){
if(class(x)[1]=="gam"){
edf.m=summary(x)$edf
p.coeff.m=summary(x)$p.coeff}else{
#edf.m=summary(x$gam)$edf
#p.coeff.m=summary(x$gam)$p.coeff
edf.m=x$gam$edf
p.coeff.m=x$gam$p.coeff
}
edf.m[which(edf.m<1)]=1 # any edf<0 are reset to 1 to ensure proper
# parameter count when there is shrinkage (bs='cc')
return(sum(c(edf.m,length(p.coeff.m))))})),2)
# count the edf values less than 0.25 to check for serious shrinkage
mod.data.out$edf.less.1=unlist(lapply(success.models,FUN=function(x){
#if(class(x)[1]=="gam"){edf.m=summary(x)$edf}else{edf.m=summary(x$gam)$edf}
if(class(x)[1]=="gam"){edf.m=summary(x)$edf}else{edf.m=x$gam$edf}
return(length(which(edf.m<0.25)))}))
# now add columns for the included predictors to the dataframe
mod.data.out=cbind(mod.data.out,var.inclusions)
# now calculate the variable importance
# find the min number of models for each variable
min.mods=min(colSums(mod.data.out[,included.vars]))
# first for AICc
var.weights=unlist(lapply(included.vars,FUN=function(x){
sum(sort(mod.data.out$wi.AICc[which(mod.data.out[,x]==1)],decreasing=T)[1:min.mods])}))
names(var.weights)=included.vars
variable.weights.raw=var.weights
#variable.weights.raw=colSums(mod.data.out[,included.vars]*mod.data.out$wi.AICc)
aic.var.weights=list(variable.weights.raw=variable.weights.raw)
# next for BIC
var.weights=unlist(lapply(included.vars,FUN=function(x){
sum(sort(mod.data.out$wi.BIC[which(mod.data.out[,x]==1)],decreasing=T)[1:min.mods])}))
names(var.weights)=included.vars
variable.weights.raw=var.weights
#variable.weights.raw=colSums(mod.data.out[,included.vars]*mod.data.out$wi.BIC)
bic.var.weights=list(variable.weights.raw=variable.weights.raw)
# now return the list of outputs
return(list(mod.data.out=mod.data.out,
used.data=use.dat,
predictor.correlations=cor.matrix,
#mod.formula=mod.formula,
failed.models=failed.models,
success.models=success.models,
variable.importance=
list(aic=aic.var.weights,bic=bic.var.weights)))
} #------------------ end function --------------------------------------------#