From f4970d7a09d958bfe5a93b4efadd5854fd155a32 Mon Sep 17 00:00:00 2001 From: Iakov Davydov <671660+idavydov@users.noreply.github.com> Date: Wed, 16 Oct 2024 12:15:36 +0200 Subject: [PATCH] code review by Juliane Co-authored-by: julianesiebourg <51031392+julianesiebourg@users.noreply.github.com> --- vignettes/basic_examples.Rmd | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/vignettes/basic_examples.Rmd b/vignettes/basic_examples.Rmd index 70576e9b..f0745a5e 100644 --- a/vignettes/basic_examples.Rmd +++ b/vignettes/basic_examples.Rmd @@ -14,7 +14,7 @@ vignette: > %\VignetteEncoding{UTF-8} --- -This vignette demonstrates the use of the `deisngit` package with a series +This vignette demonstrates the use of the `desingit` package with a series of examples deriving from the same task, namely to randomize samples of a two-factor experiment into plate layouts. We shall start with the most basic use and gradually exploring some basic yet useful utilities provided @@ -76,7 +76,7 @@ samples <- bind_rows(replicate(n_reps, animals, simplify = FALSE), samples |> head(10) |> - arrange(animal, group, replicate) %>% + arrange(animal, group, replicate) |> gt::gt() ``` @@ -287,7 +287,7 @@ and to plot the plate layout. If necessary, you can retrieve the samples from the BatchContainer instance `bc` with the method `bc$get_samples()`, or move samples with the method `bc$move_samples()`. The better approach usually is to optimize the design with `optimize_design()`. -3. The scoring function can be set by passinrg `scoring` parameter to the +3. The scoring function can be set by passing `scoring` parameter to the `optimize_design()` function. The sample assignent is optimized by shuffling the samples. 4. Various options are available to further customize the design.