-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathfeatures.py
138 lines (105 loc) · 5.69 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import collections
import math
import numpy
import skimage
import skimage.filters
import scipy.ndimage.filters
SimilarityMask = collections.namedtuple("SimilarityMask", ["size", "color", "texture", "fill"])
class Features:
def __init__(self, image, label, n_region, similarity_weight = SimilarityMask(1, 1, 1, 1)):
self.image = image
self.label = label
self.w = similarity_weight
self.imsize = float(label.shape[0] * label.shape[1])
self.size = self.__init_size(n_region)
self.color = self.__init_color(n_region)
self.bbox = self.__init_bounding_box(n_region)
self.texture = self.__init_texture(n_region)
def __init_size(self, n_region):
bincnt = numpy.bincount(self.label.ravel(), minlength = n_region)
return {i : bincnt[i] for i in range(n_region)}
def __init_color(self, n_region):
n_bin = 25
bin_width = int(math.ceil(255.0 / n_bin))
bins_color = [i * bin_width for i in range(n_bin + 1)]
bins_label = range(n_region + 1)
bins = [bins_label, bins_color]
r_hist = numpy.histogram2d(self.label.ravel(), self.image[:, :, 0].ravel(), bins=bins)[0] #shape=(n_region, n_bin)
g_hist = numpy.histogram2d(self.label.ravel(), self.image[:, :, 1].ravel(), bins=bins)[0]
b_hist = numpy.histogram2d(self.label.ravel(), self.image[:, :, 2].ravel(), bins=bins)[0]
hist = numpy.hstack([r_hist, g_hist, b_hist])
l1_norm = numpy.sum(hist, axis = 1).reshape((n_region, 1))
hist = numpy.nan_to_num(hist / l1_norm)
return {i : hist[i] for i in range(n_region)}
def __init_bounding_box(self, n_region):
bbox = dict()
for region in range(n_region):
I, J = numpy.where(self.label == region)
bbox[region] = (min(I), min(J), max(I), max(J))
return bbox
def __init_texture(self, n_region):
ar = numpy.ndarray((n_region, 240))
return {i : ar[i] for i in range(n_region)}
def __calc_gradient_histogram(self, label, gaussian, n_region, nbins_orientation = 8, nbins_inten = 10):
op = numpy.array([[-1, 0, 1]], dtype=numpy.float32)
h = scipy.ndimage.filters.convolve(gaussian, op)
v = scipy.ndimage.filters.convolve(gaussian, op.transpose())
g = numpy.arctan2(v, h)
# define each axis for texture histogram
bin_width = 2 * math.pi / 8
bins_label = range(n_region + 1)
bins_angle = numpy.linspace(-math.pi, math.pi, nbins_orientation + 1)
bins_inten = numpy.linspace(.0, 1., nbins_inten + 1)
bins = [bins_label, bins_angle, bins_inten]
# calculate 3 dimensional histogram
ar = numpy.vstack([label.ravel(), g.ravel(), gaussian.ravel()]).transpose()
hist = numpy.histogramdd(ar, bins = bins)[0]
# orientation_wise intensity histograms are serialized for each region
return numpy.reshape(hist, (n_region, nbins_orientation * nbins_inten))
def __init_texture(self, n_region):
gaussian = skimage.filters.gaussian_filter(self.image, sigma = 1.0, multichannel = True).astype(numpy.float32)
r_hist = self.__calc_gradient_histogram(self.label, gaussian[:, :, 0], n_region)
g_hist = self.__calc_gradient_histogram(self.label, gaussian[:, :, 1], n_region)
b_hist = self.__calc_gradient_histogram(self.label, gaussian[:, :, 2], n_region)
hist = numpy.hstack([r_hist, g_hist, b_hist])
l1_norm = numpy.sum(hist, axis = 1).reshape((n_region, 1))
hist = numpy.nan_to_num(hist / l1_norm)
return {i : hist[i] for i in range(n_region)}
def __sim_size(self, i, j):
return 1. - (self.size[i] + self.size[j]) / self.imsize
def __calc_histogram_intersection(self, vec1, vec2):
return numpy.sum(numpy.minimum(vec1, vec2))
def __sim_texture(self, i, j):
return self.__calc_histogram_intersection(self.texture[i], self.texture[j])
def __sim_color(self, i, j):
return self.__calc_histogram_intersection(self.color[i], self.color[j])
def __sim_fill(self, i, j):
(bi0, bi1, bi2, bi3), (bj0, bj1, bj2, bj3) = self.bbox[i], self.bbox[j]
(bij0, bij1, bij2, bij3) = min(bi0, bj0), min(bi1, bj1), max(bi2, bj2), max(bi3, bj3)
bij_size = (bij2 - bij0) * (bij3 - bij1)
return 1. - (bij_size - self.size[i] - self.size[j]) / self.imsize
def similarity(self, i, j):
return self.w.size * self.__sim_size(i, j) + \
self.w.texture * self.__sim_texture(i, j) + \
self.w.color * self.__sim_color(i, j) + \
self.w.fill * self.__sim_fill(i, j)
def __merge_size(self, i, j, new_region_id):
self.size[new_region_id] = self.size[i] + self.size[j]
def __histogram_merge(self, vec1, vec2, w1, w2):
return (w1 * vec1 + w2 * vec2) / (w1 + w2)
def __merge_color(self, i, j, new_region_id):
self.color[new_region_id] = self.__histogram_merge(self.color[i], self.color[j], self.size[i], self.size[j])
def __merge_texture(self, i, j, new_region_id):
self.texture[new_region_id] = self.__histogram_merge(self.texture[i], self.texture[j], self.size[i], self.size[j])
def __merge_bbox(self, i, j, new_region_id):
(bi0, bi1, bi2, bi3), (bj0, bj1, bj2, bj3) = self.bbox[i], self.bbox[j]
self.bbox[new_region_id] = (min(bi0, bj0), min(bi1, bj1), max(bi2, bj2), max(bi3, bj3))
def merge(self, i, j):
new_region_id = len(self.size)
self.__merge_size(i, j, new_region_id)
self.__merge_color(i, j, new_region_id)
self.__merge_texture(i, j, new_region_id)
self.__merge_bbox(i, j, new_region_id)
return new_region_id