-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathevaluation_utils.py
325 lines (248 loc) · 12 KB
/
evaluation_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import numpy as np
import torch
import torchvision.models as models
from Networks import ZeroOneResNet50_robust
def fix_perturbation_size(x0, delta, epsilon):
"""
calculates eta such that
norm(clip(x0 + eta * delta, 0, 1)) == epsilon
assumes x0 and delta to have a batch dimension
and epsilon to be a scalar
"""
n, ch, nx, ny = x0.shape
assert delta.shape[0] == n
delta2 = delta.pow(2).flatten(1)
space = torch.where(delta >= 0, 1 - x0, x0).flatten(1)
f2 = space.pow(2) / torch.max(delta2, 1e-20 * torch.ones_like(delta2))
f2_sorted, ks = torch.sort(f2, dim=-1)
m = torch.cumsum(delta2.gather(dim=-1, index=ks.flip(dims=(1,))), dim=-1).flip(dims=(1,))
dx = f2_sorted[:, 1:] - f2_sorted[:, :-1]
dx = torch.cat((f2_sorted[:, :1], dx), dim=-1)
dy = m * dx
y = torch.cumsum(dy, dim=-1)
c = y >= epsilon**2
# work-around to get first nonzero element in each row
f = torch.arange(c.shape[-1], 0, -1, device=c.device)
v, j = torch.max(c.long() * f, dim=-1)
rows = torch.arange(0, n)
eta2 = f2_sorted[rows, j] - (y[rows, j] - epsilon**2) / m[rows, j]
eta2 = torch.where(v == 0, f2_sorted[:, -1], eta2)
eta = torch.sqrt(eta2)
eta = eta.reshape((-1,) + (1,) * (len(x0.shape) - 1))
return torch.clamp(eta * delta + x0, 0, 1).view(n, ch, nx, ny)
def zero_accuracy_perturbation(image, labels, noise, model, n_binary_steps=40):
"""Calculate the l2 distance to the decision boundary; i.e. how much of the
given noise do we have to add to achieve a misclassification?"""
model.eval()
with torch.no_grad():
save_images = torch.zeros_like(image).flatten(1)
save_l2s = torch.zeros(image.shape[0], device=image.device).fill_(save_images.shape[1])
image_f = image.flatten(1)
noise_f = noise.flatten(1)
assert (torch.sum(noise_f, dim=1) != 0).any() # don't divide by 0
noise_normalized = noise_f / torch.norm(noise_f, p=2, dim=1).view(image.shape[0], 1)
eta = torch.empty((image.shape[0]), device=image.device).fill_(0)
# coarse search
for b in range(0, int(np.round(np.log(784.) / np.log(1.8)))):
noise_f_clipped = torch.clamp(eta[:, None] * noise_normalized + image_f, 0, 1)
mask_correct = torch.argmax(model(noise_f_clipped.view(image.shape)), dim=1) == labels
eta[mask_correct] = 1.8**b
delta_eta = eta / 2.
# binary search
for i in range(n_binary_steps):
noise_f_clipped = torch.clamp(eta[:, None] * noise_normalized + image_f, 0, 1)
current_l2 = torch.norm(noise_f_clipped - image_f, p=2, dim=1)
mask_correct = torch.argmax(model(noise_f_clipped.view(image.shape)), dim=1) == labels
mask_wrong = ~mask_correct
eta[mask_wrong] = eta[mask_wrong] - delta_eta[mask_wrong]
eta[mask_correct] = eta[mask_correct] + delta_eta[mask_correct]
delta_eta /= 2.
save_images[mask_wrong, :] = noise_f_clipped[mask_wrong, :]
save_l2s[mask_wrong] = current_l2[mask_wrong]
return save_images.view(image.shape), save_l2s
def l2_manual_batch(perturbed, data):
"""Calculates the batch-wise l2 distance"""
norm = torch.norm(perturbed.flatten(1) - data.flatten(1), p=2, dim=1)
mse_man = norm / (data.shape[1] * data.shape[2] * data.shape[3])
return mse_man
def test_classifier_noisy(noise_gen, test_loader, model, args, device):
"""Test the classifier's performance on adversarial noise"""
model.eval()
noise_gen.eval()
all_l2 = torch.zeros(len(test_loader.dataset))
all_epsilons = torch.zeros(len(test_loader.dataset))
correct = 0
with torch.no_grad():
for batch_idx, (test_data, test_labels) in enumerate(test_loader):
test_data, test_labels = test_data.to(device), test_labels.to(device)
# Get delta = NM(z)
delta_img = noise_gen(test_data)
adv_sample = fix_perturbation_size(test_data, delta_img, epsilon=noise_gen.epsilon)
imgs, epsilons = zero_accuracy_perturbation(test_data, test_labels, delta_img, model)
adv_logits = model(adv_sample)
pred = adv_logits.max(1, keepdim=True)[1]
correct += pred.eq(test_labels.view_as(pred)).sum().item()
start_ind = batch_idx * args.test_batch_size
end_ind = batch_idx * args.test_batch_size + len(test_labels)
l2 = l2_manual_batch(adv_sample, test_data)
all_l2[start_ind:end_ind] = l2
all_epsilons[start_ind:end_ind] = epsilons
accuracy = correct / len(test_loader.dataset)
return accuracy, torch.median(all_l2), torch.median(all_epsilons)
def load_robust_model(model_name, device):
"""loads robust model specified by modelname"""
model = models.resnet50(pretrained=True)
model_paths = {
'ANT+SIN': './Models/ANT_SIN_Model.pth',
'ANT': './Models/ANT_Model.pth',
'Speckle': './Models/Speckle_Model.pth',
'Gauss_mult': './Models/Gauss_mult_Model.pth',
'Gauss_sigma_0.5': './Models/Gauss_sigma_0.5_Model.pth',
'ANT3x3': './Models/ANT3x3_Model.pth',
'ANT3x3+SIN' './Models/ANT3x3_SIN_Model.pth':
}
if not model_name == 'clean':
checkpoint = torch.load(model_paths[model_name])
model.load_state_dict(checkpoint['model_state_dict'])
# wrap model:
model_wrapped = ZeroOneResNet50_robust(model)
model_wrapped = model_wrapped.eval().to(device)
return model_wrapped
def get_accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def accuracy_on_imagenet_c(data_loaders, model, args, writer, num_iteration):
"""Computes model accuracy and mCE on ImageNet-C"""
print("Performance on ImageNet-C:")
model.eval()
ce_alexnet = get_ce_alexnet()
with torch.no_grad():
top1_in_c = AverageMeter('Acc_IN_C@1', ':6.2f')
top5_in_c = AverageMeter('Acc_IN_C@5', ':6.2f')
top1_in_c_wo_noises = AverageMeter('Acc_IN_C_wo_Noises@1', ':6.2f')
top5_in_c_wo_noises = AverageMeter('Acc_IN_C_wo_Noises@5', ':6.2f')
mce, counter = 0, 0
for name, data_loader in data_loaders.items():
top1_tmp = AverageMeter('Acc_tmp@1', ':6.2f')
top5_tmp = AverageMeter('Acc_tmp@5', ':6.2f')
for severity, loader in data_loader.items():
top1_sev_tmp = AverageMeter('Acc_sev_tmp@1', ':6.2f')
ct = 0
for data, labels in loader:
data, labels = data.to(args.device), labels.to(args.device)
logits = model(data)
acc1, acc5 = get_accuracy(logits, labels, (1, 5))
top1_in_c.update(acc1[0], data.size(0))
top5_in_c.update(acc5[0], data.size(0))
top1_sev_tmp.update(acc1[0], data.size(0))
top1_tmp.update(acc1[0], data.size(0))
top5_tmp.update(acc5[0], data.size(0))
if name not in ['Gaussian Noise', 'Shot Noise', 'Impulse Noise']:
top1_in_c_wo_noises.update(acc1[0], data.size(0))
top5_in_c_wo_noises.update(acc5[0], data.size(0))
ct += 1
if ct == 50 and not args.evaluate:
break
args.IN_C_Results[name][int(severity)+1] = top1_sev_tmp.avg.item()
print("{0}: Severity: {1}, Top1 accuracy {2:.2f}".format(name, severity, top1_sev_tmp.avg.item()),
file=args.file)
# get Corruption Error CE:
CE = get_mce_from_accuracy(top1_tmp.avg.item(), ce_alexnet[name])
mce += CE
counter += 1
# Logging:
print("{0}: Top1 accuracy {1:.2f}, Top5 accuracy: {2:.2f}, CE: {3:.2f}\n".format(
name, top1_tmp.avg.item(), top5_tmp.avg.item(), 100. * CE))
writer.add_scalar(f'IN-C/Accuracy {name}', top1_tmp.avg.item(), num_iteration)
writer.add_scalar(f'IN-C/Accuracy {name}top5', top5_tmp.avg.item(), num_iteration)
args.IN_C_Results[name][int(num_iteration/10)] = top1_tmp.avg.item()
mce /= counter
print("Full ImageNet-C: Top1 accuracy {0:.2f}, Top5 accuracy: {1:.2f}, mCE: {2:.2f}\n".format(
top1_in_c.avg.item(),
top5_in_c.avg.item(),
mce * 100.), file=args.file)
print("ImageNet-C w/o Noises: : Top1 accuracy: Top1 accuracy {0:.2f}, Top5 accuracy: {1:.2f}\n".format(
top1_in_c_wo_noises.avg.item(),
top5_in_c_wo_noises.avg.item()), file=args.file)
writer.add_scalar('IN-C/mCE', mce * 100., num_iteration)
writer.add_scalar('IN-C/Accuracy Full ImageNet-C', top1_in_c.avg.item(), num_iteration)
writer.add_scalar('IN-C/Accuracy ImageNet-C w/o noises', top1_in_c_wo_noises.avg.item(), num_iteration)
writer.add_scalar('IN-C/Accuracy Full ImageNet-C top5', top5_in_c.avg.item(), num_iteration)
writer.add_scalar('IN-C/Accuracy ImageNet-C w/o noises top5', top5_in_c_wo_noises.avg.item(), num_iteration)
writer.add_scalar('Val/Accuracy Full ImageNet-C', top1_in_c.avg.item(), num_iteration)
path = args.exp_path + '/IN_C_Results_resnet_50.npy'
np.save(path, args.IN_C_Results)
return
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def validate(val_loader, model, device='cuda'):
"""Computes accuracy on ImageNet val"""
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to evaluate mode
model.eval()
with torch.no_grad():
for images, target in val_loader:
images, target = images.to(device), target.to(device)
output = model(images)
# measure accuracy and record loss
acc1, acc5 = get_accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
return top1.avg, top5.avg
def get_mce_from_accuracy(accuracy, error_alexnet):
"""Computes mean Corruption Error from accuracy"""
error = 100. - accuracy
ce = error / (error_alexnet * 100.)
return ce
def get_ce_alexnet():
"""Returns Corruption Error values for AlexNet"""
ce_alexnet = dict()
ce_alexnet['Gaussian Noise'] = 0.886428
ce_alexnet['Shot Noise'] = 0.894468
ce_alexnet['Impulse Noise'] = 0.922640
ce_alexnet['Defocus Blur'] = 0.819880
ce_alexnet['Glass Blur'] = 0.826268
ce_alexnet['Motion Blur'] = 0.785948
ce_alexnet['Zoom Blur'] = 0.798360
ce_alexnet['Snow'] = 0.866816
ce_alexnet['Frost'] = 0.826572
ce_alexnet['Fog'] = 0.819324
ce_alexnet['Brightness'] = 0.564592
ce_alexnet['Contrast'] = 0.853204
ce_alexnet['Elastic Transform'] = 0.646056
ce_alexnet['Pixelate'] = 0.717840
ce_alexnet['JPEG Compression'] = 0.606500
return ce_alexnet