-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathstylize.py
165 lines (138 loc) · 6.54 KB
/
stylize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python
import argparse
from function import adaptive_instance_normalization
import net
from pathlib import Path
from PIL import Image
import random
import torch
import torch.nn as nn
import torchvision.transforms
from torchvision.utils import save_image
from tqdm import tqdm
parser = argparse.ArgumentParser(description='This script applies the AdaIN style transfer method to arbitrary datasets.')
parser.add_argument('--content-dir', type=str,
help='Directory path to a batch of content images')
parser.add_argument('--style-dir', type=str,
help='Directory path to a batch of style images')
parser.add_argument('--output-dir', type=str, default='output',
help='Directory to save the output images')
parser.add_argument('--num-styles', type=int, default=1, help='Number of styles to \
create for each image (default: 1)')
parser.add_argument('--alpha', type=float, default=1.0,
help='The weight that controls the degree of \
stylization. Should be between 0 and 1')
parser.add_argument('--extensions', nargs='+', type=str, default=['png', 'jpeg', 'jpg'], help='List of image extensions to scan style and content directory for (case sensitive), default: png, jpeg, jpg')
# Advanced options
parser.add_argument('--content-size', type=int, default=0,
help='New (minimum) size for the content image, \
keeping the original size if set to 0')
parser.add_argument('--style-size', type=int, default=512,
help='New (minimum) size for the style image, \
keeping the original size if set to 0')
parser.add_argument('--crop', type=int, default=0,
help='If set to anything else than 0, center crop of this size will be applied to the content image \
after resizing in order to create a squared image (default: 0)')
# random.seed(131213)
def input_transform(size, crop):
transform_list = []
if size != 0:
transform_list.append(torchvision.transforms.Resize(size))
if crop != 0:
transform_list.append(torchvision.transforms.CenterCrop(crop))
transform_list.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(transform_list)
return transform
def style_transfer(vgg, decoder, content, style, alpha=1.0):
assert (0.0 <= alpha <= 1.0)
content_f = vgg(content)
style_f = vgg(style)
feat = adaptive_instance_normalization(content_f, style_f)
feat = feat * alpha + content_f * (1 - alpha)
return decoder(feat)
def main():
args = parser.parse_args()
# set content and style directories
content_dir = Path(args.content_dir)
style_dir = Path(args.style_dir)
style_dir = style_dir.resolve()
output_dir = Path(args.output_dir)
output_dir = output_dir.resolve()
assert style_dir.is_dir(), 'Style directory not found'
# collect content files
extensions = args.extensions
assert len(extensions) > 0, 'No file extensions specified'
content_dir = Path(content_dir)
content_dir = content_dir.resolve()
assert content_dir.is_dir(), 'Content directory not found'
dataset = []
for ext in extensions:
dataset += list(content_dir.rglob('*.' + ext))
assert len(dataset) > 0, 'No images with specified extensions found in content directory' + content_dir
content_paths = sorted(dataset)
print('Found %d content images in %s' % (len(content_paths), content_dir))
# collect style files
styles = []
for ext in extensions:
styles += list(style_dir.rglob('*.' + ext))
assert len(styles) > 0, 'No images with specified extensions found in style directory' + style_dir
styles = sorted(styles)
print('Found %d style images in %s' % (len(styles), style_dir))
decoder = net.decoder
vgg = net.vgg
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
decoder.eval()
vgg.eval()
decoder.load_state_dict(torch.load('models/decoder.pth'))
vgg.load_state_dict(torch.load('models/vgg_normalised.pth'))
vgg = nn.Sequential(*list(vgg.children())[:31])
vgg.to(device)
decoder.to(device)
content_tf = input_transform(args.content_size, args.crop)
style_tf = input_transform(args.style_size, 0)
# disable decompression bomb errors
Image.MAX_IMAGE_PIXELS = None
skipped_imgs = []
# actual style transfer as in AdaIN
with tqdm(total=len(content_paths)) as pbar:
for content_path in content_paths:
try:
content_img = Image.open(content_path).convert('RGB')
for style_path in random.sample(styles, args.num_styles):
style_img = Image.open(style_path).convert('RGB')
content = content_tf(content_img)
style = style_tf(style_img)
style = style.to(device).unsqueeze(0)
content = content.to(device).unsqueeze(0)
with torch.no_grad():
output = style_transfer(vgg, decoder, content, style,
args.alpha)
output = output.cpu()
rel_path = content_path.relative_to(content_dir)
out_dir = output_dir.joinpath(rel_path.parent)
# create directory structure if it does not exist
if not out_dir.is_dir():
out_dir.mkdir(parents=True)
content_name = content_path.stem
style_name = style_path.stem
out_filename = content_name + '-stylized-' + style_name + content_path.suffix
output_name = out_dir.joinpath(out_filename)
save_image(output, output_name, padding=0) #default image padding is 2.
style_img.close()
content_img.close()
except OSError as e:
print('Skipping stylization of %s due to an error' %(content_path))
skipped_imgs.append(content_path)
continue
except RuntimeError as e:
print('Skipping stylization of %s due to an error' %(content_path))
skipped_imgs.append(content_path)
continue
finally:
pbar.update(1)
if(len(skipped_imgs) > 0):
with open(output_dir.joinpath('skipped_imgs.txt'), 'w') as f:
for item in skipped_imgs:
f.write("%s\n" % item)
if __name__ == '__main__':
main()