-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathopenai_work4me.py
59 lines (44 loc) · 1.61 KB
/
openai_work4me.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import openai
openai.organization = "your_org"
openai.api_key = "your_api_key"
# openai.Model.list()
import pickle
with open('your_data.pkl','rb') as f:
news = pickle.loads(f.read())
instruction = """\n---
请从上文中抽取出所有公司/机构、对应的在本文中的情感倾向(积极、消极、中性)以及原因。
并用这样的格式返回:
{"ORG":..., "sentiment":..., "reason":...}"""
import tiktoken
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
def get_num_tokens(text):
return len(encoding.encode(text))
contents = [t + instruction for t in news]
def get_openai_res(content):
try:
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": content}
]
)
msg = completion.choices[0].message['content']
except:
msg = ''
return [content,msg]
import concurrent.futures
results = []
with concurrent.futures.ThreadPoolExecutor(max_workers=20) as executor:
futures = {executor.submit(get_openai_res, content) for content in contents}
for i, future in enumerate(concurrent.futures.as_completed(futures), 1):
results.append(future.result())
# 这里,每当有任务完成,就会打印一次进度
print(f"Processed {i}/{len(contents)} contents.")
if i % 50 == 0:
with open('sentiment_comp_qaie_pairs.pkl','wb') as f:
pickle.dump(results,f)
print('saved',i)
len(results)
with open('sentiment_comp_qaie_pairs.pkl','wb') as f:
pickle.dump(results,f)