-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_glue_ambi.py
1027 lines (910 loc) · 48 KB
/
run_glue_ambi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# record some attempts on ambiguous training/reverse augmentation...
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 🤗 Transformers model for sequence classification on GLUE."""
import argparse
from collections import defaultdict
import json
import logging
import math
import os
import random
from pathlib import Path
import datasets
import torch
from torch import nn
from datasets import load_dataset, load_from_disk, load_metric
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import Repository
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
)
# from transformers.utils import get_full_repo_name, send_example_telemetry
from transformers.utils.versions import require_version
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
"snli": ("premise", "hypothesis"),
"boolq": ("question", "passage"),
"cb": ("premise", "hypothesis"),
"mrpc-noisy":("sentence1", "sentence2"),
"rte-noisy":("sentence1", "sentence2"),
}
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--task_name",
type=str,
default=None,
help="The name of the glue task to train on.",
# choices=list(task_to_keys.keys()),
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--ignore_mismatched_sizes",
action="store_true",
help="Whether or not to enable to load a pretrained model whose head dimensions are different.",
)
parser.add_argument("--do_recording", action="store_true", help="Whether to record the training dynamics.")
parser.add_argument("--with_data_selection", action="store_true", help="Use only a selected subset of the training data for model training.")
parser.add_argument("--data_selection_region", default=None, choices=("easy","hard","ambiguous"),
help="Three regions from the dataset cartography: easy, hard and ambiguous")
parser.add_argument("--continue_train", action="store_true")
parser.add_argument("--continue_num_train_epochs", type=int, default=5)
parser.add_argument("--log_name", type=str, default=None, help='if set, will create a log file recording the metrics')
parser.add_argument("--selected_indices_filename", type=str)
parser.add_argument("--do_lwf", action="store_true")
parser.add_argument("--train_with_sample_loss", action="store_true")
parser.add_argument("--continue_train_with_sample_loss", action="store_true")
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
# if args.push_to_hub:
# assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
# send_example_telemetry("run_glue_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator = (
Accelerator(log_with=args.report_to, logging_dir=args.output_dir) if args.with_tracking else Accelerator()
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# creating log filed
def log_to_file(info=None):
if args.log_name is not None:
if accelerator.is_local_main_process:
if not os.path.exists(f'log/{args.task_name}'):
os.mkdir(f'log/{args.task_name}')
with open(f'log/{args.task_name}/{args.log_name}.txt', 'a') as log_f:
if info is not None:
log_f.write(str(info)+'\n')
import datetime
args_str = ' '.join([k+'='+str(args.__dict__[k]) for k in args.__dict__])
log_to_file('\n-------------------\n')
log_to_file(datetime.datetime.now())
log_to_file("- Key params:")
log_to_file(args_str)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.task_name is not None:
# Downloading and loading a dataset from the hub.
if args.task_name in ['snli']:
# raw_datasets = load_dataset(args.task_name)
raw_datasets = load_from_disk(f"datasets/{args.task_name}/with_idx")
# snli里包含了一些-1的label,得去掉
# 跟GLUE不同,SNLI包含了有标签的test set
# raw_datasets['train'] = raw_datasets['train'].filter(lambda x:x['label']!=-1)
# raw_datasets['validation'] = raw_datasets['validation'].filter(lambda x:x['label']!=-1)
# raw_datasets['test'] = raw_datasets['test'].filter(lambda x:x['label']!=-1)
elif args.task_name in ['boolq', 'cb', 'axb', 'axg']:
raw_datasets = load_dataset("super_glue", args.task_name)
elif 'noisy' in args.task_name:
raw_datasets = load_from_disk(f"datasets/{args.task_name}/with_idx")
else:
raw_datasets = load_dataset("glue", args.task_name)
else:
# Loading the dataset from local csv or json file.
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = (args.train_file if args.train_file is not None else args.validation_file).split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
if args.task_name is not None:
is_regression = args.task_name == "stsb"
if not is_regression:
if args.task_name == 'mnli':
label_list = raw_datasets["validation_matched"].features["label"].names
else:
label_list = raw_datasets["validation"].features["label"].names
num_labels = len(label_list)
else:
num_labels = 1
else:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = raw_datasets["validation"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# --------------------------- Data Selection: -----------------------------------
# data selection is ONLY applied on train set
if args.with_data_selection:
assert args.data_selection_region is not None, "You much specify `data_selection_region` when using `with_data_selection`"
model_name = args.model_name_or_path
if '/' in model_name:
model_name = model_name.split('/')[-1]
assert os.path.exists(f'dy_log/{args.task_name}/{model_name}/three_regions_data_indices.json'), "Selection indices file not found!"
with open(f'dy_log/{args.task_name}/{model_name}/three_regions_data_indices.json','r') as f:
three_regions_data_indices = json.loads(f.read())
selected_indices = three_regions_data_indices[args.data_selection_region]
raw_datasets['train'] = raw_datasets['train'].select(selected_indices)
logger.info("~~~~~ Applying Data Selection ~~~~~ ")
logger.info(f"~~~~~ Region: {args.data_selection_region} ")
logger.info(f"~~~~~ Size: {len(raw_datasets['train'])} ")
# ----------------------------------------------------------------------------------------------------
# with open(f'dy_log/sst2/distilbert-base-cased/three_regions_data_indices.json','r') as f:
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
ignore_mismatched_sizes=args.ignore_mismatched_sizes,
)
# 对非HF官方模型的名称的处理,只保留模型名
if '/' in args.model_name_or_path:
args.model_name_or_path = args.model_name_or_path.split('/')[-1]
# Preprocessing the datasets
# --------------- GLUE tasks ---------------
if args.task_name is not None:
if 'noisy' in args.task_name:
task_name = args.task_name.split('-')[0]
sentence1_key, sentence2_key = task_to_keys[task_name]
else:
sentence1_key, sentence2_key = task_to_keys[args.task_name]
# --------------- Other tasks ---------------
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
# 这里的逻辑是这样的:
# 对于非glue的数据集,要求要包含`label`字段
# 然后希望你有`sentence1`, `sentence2`这两个字段,这样就跟glue对齐了
# 如果你也不是用的这个名字,那就选择非label列的前两个字段来分别作为sentence1和sentence2
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
elif "sentence" in non_label_column_names: # for classical classification tasks, like sst2
sentence1_key, sentence2_key = ("sentence", None)
elif "question" in non_label_column_names and "sentence" in non_label_column_names: # for tasks like qnli
sentence1_key, sentence2_key = ("question", "sentence")
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
logger.info(
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
"Using it!"
)
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif args.task_name is None and not is_regression:
label_to_id = {v: i for i, v in enumerate(label_list)}
if label_to_id is not None:
model.config.label2id = label_to_id
model.config.id2label = {id: label for label, id in config.label2id.items()}
elif args.task_name is not None and not is_regression:
model.config.label2id = {l: i for i, l in enumerate(label_list)}
model.config.id2label = {id: label for label, id in config.label2id.items()}
padding = "max_length" if args.pad_to_max_length else False
def preprocess_function(examples):
# Tokenize the texts
texts = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*texts, padding=padding, max_length=args.max_length, truncation=True)
if "label" in examples:
if label_to_id is not None:
# Map labels to IDs (not necessary for GLUE tasks)
result["labels"] = [label_to_id[l] for l in examples["label"]]
else:
# In all cases, rename the column to labels because the model will expect that.
result["labels"] = examples["label"]
return result
with accelerator.main_process_first():
processed_datasets = raw_datasets.map(
preprocess_function,
batched=True,
# 得把这行改掉:
# 以SST2为例,这里会把 ['sentence', 'label', 'idx'] 给去掉(不用担心label,因为上面已经新建了一个labels列)
# remove_columns=raw_datasets["train"].column_names,
# 改为:
remove_columns=[c for c in raw_datasets["train"].column_names if c != 'idx'], # 保留idx,其他的可以去掉
desc="Running tokenizer on dataset",
)
train_dataset = processed_datasets["train"]
# ============================------------------------------
# 8.29 MNLI add reverse pair data
if False:
with open('HCT/mnli_easy_label2_top10k.txt','r') as f:
selected_ids = [int(x) for x in f.readlines()]
train_data = raw_datasets['train'].select(selected_ids)
orig_premise_list = train_data['premise']
orig_hypothesis_list = train_data['hypothesis']
new_train_data = train_data.remove_columns(['hypothesis','premise']).add_column('premise', orig_hypothesis_list).add_column('hypothesis', orig_premise_list)
with accelerator.main_process_first():
processed_new_train_data = new_train_data.map(
preprocess_function,
batched=True,
remove_columns=[c for c in raw_datasets["train"].column_names if c != 'idx'], # 保留idx,其他的可以去掉
desc="Running tokenizer on dataset",
)
from datasets import concatenate_datasets
train_dataset = concatenate_datasets([train_dataset,processed_new_train_data])
# ============================------------------------------
eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
# num_warmup_steps=args.num_warmup_steps,
num_warmup_steps=int(args.max_train_steps * 0.06),
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# We initialize the trackers only on main process because `accelerator.log`
# only logs on main process and we don't want empty logs/runs on other processes.
if args.with_tracking:
if accelerator.is_main_process:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("glue_no_trainer", experiment_config)
# Get the metric function
if args.task_name is not None:
if args.task_name == 'snli':
metric = load_metric("glue", 'mnli')
elif args.task_name in ['boolq','cb']:
metric = load_metric("super_glue", args.task_name)
elif 'noisy' in args.task_name:
task_name = args.task_name.split('-')[0]
metric = load_metric("glue", task_name)
else:
metric = load_metric("glue", args.task_name)
else:
metric = load_metric("accuracy")
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
else:
resume_step = int(training_difference.replace("step_", ""))
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
# ============================ Training Loop ============================
log_to_file('Validation performance after each training epoch:')
# ============================------------------------------
# 9.2 ambiguous first weight
from torch.nn import CrossEntropyLoss
# loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
my_loss_fct = CrossEntropyLoss(reduction="none")
def loss_fct_with_sample_weights(logits, labels, weights):
# weights: list
losses = my_loss_fct(logits.view(-1, num_labels), labels.view(-1))
weights = torch.Tensor(weights)
# weights = accelerator.prepare(weights)
weights = weights.to(accelerator.device)
return (losses * weights).mean()
import pickle
with open('HCT/mnli-roberta-weight-a0.6-k4.weight', 'rb') as handle:
idx2weight = pickle.load(handle)
# ============================------------------------------
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == starting_epoch:
if resume_step is not None and step < resume_step:
completed_steps += 1
continue
if args.train_with_sample_loss:
sample_weights = [idx2weight[int(idx)] for idx in batch['idx']]
# batch中包含了idx字段,这里需要去除
batch = {k:v for k,v in batch.items() if k != 'idx'}
outputs = model(**batch)
loss = loss_fct_with_sample_weights(outputs.logits, batch['labels'], sample_weights)
else:
# batch中包含了idx字段,这里需要去除
batch = {k:v for k,v in batch.items() if k != 'idx'}
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps }"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
# ------------------ Recording Training Dynamics --------------------
# 在每一个epoch之后,对train set所有样本再过一遍,记录dynamics
# 每个epoch单独一个文件
if args.do_recording:
if accelerator.is_main_process:
if not os.path.exists(f'dy_log/{args.task_name}/'):
os.mkdir(f'dy_log/{args.task_name}/')
if not os.path.exists(f'dy_log/{args.task_name}/{args.model_name_or_path}'):
os.mkdir(f'dy_log/{args.task_name}/{args.model_name_or_path}')
log_path = f'dy_log/{args.task_name}/{args.model_name_or_path}/training_dynamics/'
if not os.path.exists(log_path):
os.mkdir(log_path)
accelerator.wait_for_everyone() # 只在 main process 里面创建文件夹,然后让其他 process 等待 main process 创建完毕
log_path = f'dy_log/{args.task_name}/{args.model_name_or_path}/training_dynamics/'
print('-*-*-*- ',log_path, os.path.exists(log_path),accelerator.device)
logger.info('---------- Recording Training Dynamics (Epoch %s) -----------'%epoch)
training_dynamics = []
all_ids = []
for step, batch in enumerate(tqdm(train_dataloader)):
# print('- - - - - - - - - - ',len(batch['idx']), accelerator.device)
idx_list = batch['idx']#.tolist()
label_list = batch['labels']#.tolist()
batch = {k:v for k,v in batch.items() if k != 'idx'}
logits_list = model(**batch).logits#.tolist() # [[],[],[],...] batch_size个[]
# 这里的关键:通过 gather 把每个 GPU上的结果合并
# 由于在使用多卡训练时,不同卡可能存在样本的重复,同一个卡也会对最后一个batch进行补齐,也会样本重复
# 使用 gather 的话,就可以按照原来的分配方式,逆着组合回去,就不用你自己处理了
# gather 之后的,在每个卡上,下述变量里包含的数量,都等同于只使用单卡进行训练时的数量
# 所以下面的for训练执行完之后,training_dynamics里就包含了全部样本,你在写入文件时,记住只在一个 process 中写入
idx_list, label_list, logits_list = accelerator.gather((idx_list, label_list, logits_list))
# print('idx_list', idx_list.shape, accelerator.device)
# print('label_list', label_list.shape, accelerator.device)
for idx, label, logits in zip(idx_list.tolist(), label_list.tolist(), logits_list.tolist()):
if idx in all_ids: # 由于 data_loader 可能会对最后一个 batch 进行补全,所以这里要去掉重复的样本
continue
all_ids.append(idx)
record = {'guid': idx, 'logits_epoch_%s'%epoch: logits, 'gold': label, 'device':str(accelerator.device)}
training_dynamics.append(record)
if accelerator.is_main_process:
print('---- Num of training_dynamics: ',len(training_dynamics),' Device: ', str(accelerator.device))
print(len(all_ids),len(list(set(all_ids))),str(accelerator.device))
assert os.path.exists(log_path),log_path
writer = open(log_path + f'dynamics_epoch_{epoch}.jsonl', 'w')
for record in training_dynamics:
writer.write(json.dumps(record) + "\n")
logger.info(f'Epoch {epoch} Saved to [{log_path}]')
writer.close()
accelerator.wait_for_everyone()
# ------------------------------------------------------------------------
# evaluation (validation set)
model.eval()
samples_seen = 0
for step, batch in enumerate(eval_dataloader):
batch = {k:v for k,v in batch.items() if k != 'idx'}
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
predictions, references = accelerator.gather((predictions, batch["labels"]))
# If we are in a multiprocess environment, the last batch has duplicates
if accelerator.num_processes > 1:
if step == len(eval_dataloader) - 1:
predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
references = references[: len(eval_dataloader.dataset) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
logger.info(f"***Evaluation*** epoch {epoch}: {eval_metric}")
log_to_file(eval_metric)
if args.with_tracking:
accelerator.log(
{
"accuracy" if args.task_name is not None else "glue": eval_metric,
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
# ============================ End Training Loop ============================
if args.output_dir is not None and args.resume_from_checkpoint is None: # 提供了path,同时没有指定resume,说明是第一次跑
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
unwrapped_model.save_pretrained(
args.output_dir, save_function=accelerator.save)
tokenizer.save_pretrained(args.output_dir)
# accelerator.save_state(args.output_dir)
# if args.push_to_hub:
# repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
# More evaluation
# e.g.
# The mismatch evaluation for MNLI task
# The test set for tasks with an annotated test set, like SNLI
if args.task_name == "mnli":
log_to_file('\nmis_match evaluation for MNLI:')
# Final evaluation on mismatched validation set
eval_dataset = processed_datasets["validation_mismatched"]
eval_dataloader = DataLoader(
eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
eval_dataloader = accelerator.prepare(eval_dataloader)
model.eval()
for step, batch in enumerate(eval_dataloader):
# batch中包含了idx字段,这里需要去除
batch = {k:v for k,v in batch.items() if k != 'idx'}
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
logger.info(f"mnli-mm: {eval_metric}")
log_to_file(eval_metric)
if args.task_name == "snli":
log_to_file('\ntest evaluation for SNLI:')
# Final evaluation on mismatched validation set
eval_dataset = processed_datasets["test"]
eval_dataloader = DataLoader(
eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
eval_dataloader = accelerator.prepare(eval_dataloader)
model.eval()
for step, batch in enumerate(eval_dataloader):
# batch中包含了idx字段,这里需要去除
batch = {k:v for k,v in batch.items() if k != 'idx'}
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
logger.info(f"snli-test: {eval_metric}")
log_to_file(eval_metric)
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# after training, continue train on some data
if args.continue_train:
if args.do_lwf:
# load the orginal trained model
model_orig = AutoModelForSequenceClassification.from_pretrained(args.output_dir)
model_orig = accelerator.prepare(model_orig)
kld_loss_fct = nn.KLDivLoss(reduction="batchmean")
log_to_file(f'\nContinue Training with subset:')
# with open(f'dy_log/{args.task_name}/bert-base-cased/three_regions_data_indices.json' ,'r') as f:
# d = json.loads(f.read())
# selected_indices = d['ambiguous']
# with open(f'dy_log/{args.task_name}/bert-base-cased/{args.selected_indices_filename}.txt', 'r') as f:
# selected_indices = [int(x) for x in f.readlines()]
# selected_train_dataset = train_dataset.filter(lambda x:x['idx'] in selected_indices)
selected_train_dataset = train_dataset
accelerator.print(selected_train_dataset)
selected_train_dataloader = DataLoader(
selected_train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
selected_train_dataloader = accelerator.prepare(selected_train_dataloader)
# optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
num_update_steps_per_epoch = math.ceil(len(selected_train_dataloader) / args.gradient_accumulation_steps)
continue_max_train_steps = args.continue_num_train_epochs * num_update_steps_per_epoch
continue_lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=continue_max_train_steps,
)
for epoch in range(args.continue_num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
for step, batch in enumerate(tqdm(selected_train_dataloader)):
if args.continue_train_with_sample_loss:
sample_weights = [idx2weight[int(idx)] for idx in batch['idx']]
# batch中包含了idx字段,这里需要去除
batch = {k:v for k,v in batch.items() if k != 'idx'}
outputs = model(**batch)
loss = loss_fct_with_sample_weights(outputs.logits, batch['labels'], sample_weights)
else:
# batch中包含了idx字段,这里需要去除
batch = {k:v for k,v in batch.items() if k != 'idx'}
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
if args.do_lwf:
model_orig.train()
orig_outputs = model_orig(**batch)
orig_logits = orig_outputs.logits
new_logits = outputs.logits
orig_logits = orig_logits.view(-1, orig_logits.size(-1))
new_logits = new_logits.view(-1, new_logits.size(-1))
args.temperature = 1
args.alpha = 0.5
distil_loss = kld_loss_fct(
nn.functional.log_softmax(new_logits / args.temperature, dim=-1),
nn.functional.softmax(orig_logits / args.temperature, dim=-1),
) * (args.temperature) ** 2
loss = args.alpha * distil_loss + loss
accelerator.backward(loss)
optimizer.step()
continue_lr_scheduler.step()
optimizer.zero_grad()
# evaluation (validation set)
model.eval()
samples_seen = 0
for step, batch in enumerate(eval_dataloader):
batch = {k:v for k,v in batch.items() if k != 'idx'}
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
predictions, references = accelerator.gather((predictions, batch["labels"]))
# If we are in a multiprocess environment, the last batch has duplicates
if accelerator.num_processes > 1:
if step == len(eval_dataloader) - 1:
predictions = predictions[: len(eval_dataloader.dataset) - samples_seen]
references = references[: len(eval_dataloader.dataset) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
logger.info(f"***Continue Evaluation*** epoch {epoch}: {eval_metric}")
log_to_file(eval_metric)
if args.continue_train:
# More evaluation
# e.g.
# The mismatch evaluation for MNLI task
# The test set for tasks with an annotated test set, like SNLI
if args.task_name == "mnli":
log_to_file('\nContinue, mis_match evaluation for MNLI:')
# Final evaluation on mismatched validation set
eval_dataset = processed_datasets["validation_mismatched"]
eval_dataloader = DataLoader(
eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
eval_dataloader = accelerator.prepare(eval_dataloader)
model.eval()
for step, batch in enumerate(eval_dataloader):
# batch中包含了idx字段,这里需要去除
batch = {k:v for k,v in batch.items() if k != 'idx'}
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
logger.info(f"mnli-mm: {eval_metric}")
log_to_file(eval_metric)
if args.task_name == "snli":
log_to_file('\nContinue, test evaluation for SNLI:')
# Final evaluation on mismatched validation set
eval_dataset = processed_datasets["test"]
eval_dataloader = DataLoader(
eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size