forked from pseudotensor/grmonty
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathharm_utils.c
598 lines (459 loc) · 12.9 KB
/
harm_utils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/***********************************************************************************
Copyright 2013 Joshua C. Dolence, Charles F. Gammie, Monika Mo\'scibrodzka,
and Po Kin Leung
GRMONTY version 1.0 (released February 1, 2013)
This file is part of GRMONTY. GRMONTY v1.0 is a program that calculates the
emergent spectrum from a model using a Monte Carlo technique.
This version of GRMONTY is configured to use input files from the HARM code
available on the same site. It assumes that the source is a plasma near a
black hole described by Kerr-Schild coordinates that radiates via thermal
synchrotron and inverse compton scattering.
You are morally obligated to cite the following paper in any
scientific literature that results from use of any part of GRMONTY:
Dolence, J.C., Gammie, C.F., Mo\'scibrodzka, M., \& Leung, P.-K. 2009,
Astrophysical Journal Supplement, 184, 387
Further, we strongly encourage you to obtain the latest version of
GRMONTY directly from our distribution website:
http://rainman.astro.illinois.edu/codelib/
GRMONTY is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GRMONTY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GRMONTY; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
***********************************************************************************/
#include "decs.h"
/* Harm globals */
extern double ****econ;
extern double ****ecov;
extern double ***bcon;
extern double ***bcov;
extern double ***ucon;
extern double ***ucov;
extern double ***p;
extern struct of_geom **geom;
extern double **ne;
extern double **thetae;
extern double **b;
void Xtoij(double X[NDIM], int *i, int *j, double del[NDIM]);
void coord(int i, int j, double *X);
void get_fluid_zone(int i, int j, double *Ne, double *Thetae, double *B,
double Ucon[NDIM], double Bcon[NDIM]);
/** HARM utilities **/
/********************************************************************
Interpolation routines
********************************************************************/
double interp_scalar(double **var, int i, int j, double coeff[4])
{
double interp;
interp =
var[i][j] * coeff[0] +
var[i][j + 1] * coeff[1] +
var[i + 1][j] * coeff[2] + var[i + 1][j + 1] * coeff[3];
return interp;
}
double lnu_min, lnu_max, dlnu;
static void init_linear_interp_weight()
{
lnu_min = log(NUMIN);
lnu_max = log(NUMAX);
dlnu = (lnu_max - lnu_min) / (N_ESAMP);
}
static double linear_interp_weight(double nu)
{
int i;
double di, lnu;
lnu = log(nu);
di = (lnu - lnu_min) / dlnu;
i = (int) di;
di = di - i;
return exp((1. - di) * wgt[i] + di * wgt[i + 1]);
}
/***********************************************************************************
End interpolation routines
***********************************************************************************/
#define JCST (M_SQRT2*EE*EE*EE/(27*ME*CL*CL))
void init_weight_table(void)
{
int i, j, l, lstart, lend, myid, nthreads;
double Ne, Thetae, B, K2;
double sum[N_ESAMP + 1], nu[N_ESAMP + 1];
double fac, sfac;
double Ucon[NDIM], Bcon[NDIM];
fprintf(stderr, "Building table for superphoton weights\n");
fflush(stderr);
/* Set up interpolation */
init_linear_interp_weight();
#pragma omp parallel for schedule(static) private(i)
for (i = 0; i <= N_ESAMP; i++) {
sum[i] = 0.;
nu[i] = exp(i * dlnu + lnu_min);
}
sfac = dx[1] * dx[2] * dx[3] * L_unit * L_unit * L_unit;
#pragma omp parallel private(i,j,Thetae, K2, Ne, B, fac, l, lstart, lend,myid,nthreads,Ucon,Bcon)
{
nthreads = omp_get_num_threads();
myid = omp_get_thread_num();
lstart = myid * (N_ESAMP / nthreads);
lend = (myid + 1) * (N_ESAMP / nthreads);
if (myid == nthreads - 1)
lend = N_ESAMP + 1;
for (i = 0; i < N1; i++)
for (j = 0; j < N2; j++) {
get_fluid_zone(i, j, &Ne, &Thetae, &B,
Ucon, Bcon);
if (Ne == 0. || Thetae < THETAE_MIN)
continue;
K2 = K2_eval(Thetae);
fac =
(JCST * Ne * B * Thetae * Thetae /
K2) * sfac * geom[i][j].g;
for (l = lstart; l < lend; l++)
sum[l] +=
fac * F_eval(Thetae, B, nu[l]);
}
#pragma omp barrier
}
#pragma omp parallel for schedule(static) private(i)
for (i = 0; i <= N_ESAMP; i++)
wgt[i] = log(sum[i] / (HPL * Ns));
fprintf(stderr, "done.\n\n");
fflush(stderr);
return;
}
#undef JCST
#define BTHSQMIN (1.e-4)
#define BTHSQMAX (1.e8)
#define NINT (20000)
double lb_min, dlb;
double nint[NINT + 1];
double dndlnu_max[NINT + 1];
void init_nint_table(void)
{
int i, j;
double Bmag, dn;
static int firstc = 1;
if (firstc) {
lb_min = log(BTHSQMIN);
dlb = log(BTHSQMAX / BTHSQMIN) / NINT;
firstc = 0;
}
for (i = 0; i <= NINT; i++) {
nint[i] = 0.;
Bmag = exp(i * dlb + lb_min);
dndlnu_max[i] = 0.;
for (j = 0; j < N_ESAMP; j++) {
dn = F_eval(1., Bmag,
exp(j * dlnu +
lnu_min)) / (exp(wgt[j]) +
1.e-100);
if (dn > dndlnu_max[i])
dndlnu_max[i] = dn;
nint[i] += dlnu * dn;
}
nint[i] *= dx[1] * dx[2] * dx[3] * L_unit * L_unit * L_unit
* M_SQRT2 * EE * EE * EE / (27. * ME * CL * CL)
* 1. / HPL;
nint[i] = log(nint[i]);
dndlnu_max[i] = log(dndlnu_max[i]);
}
return;
}
static void init_zone(int i, int j, double *nz, double *dnmax)
{
int l;
double Ne, Thetae, Bmag, lbth;
double dl, dn, ninterp, K2;
double Ucon[NDIM], Bcon[NDIM];
get_fluid_zone(i, j, &Ne, &Thetae, &Bmag, Ucon, Bcon);
if (Ne == 0. || Thetae < THETAE_MIN) {
*nz = 0.;
*dnmax = 0.;
return;
}
lbth = log(Bmag * Thetae * Thetae);
dl = (lbth - lb_min) / dlb;
l = (int) dl;
dl = dl - l;
if (l < 0) {
*dnmax = 0.;
*nz = 0.;
return;
} else if (l >= NINT) {
fprintf(stderr,
"warning: outside of nint table range %g...change in harm_utils.c\n",
Bmag * Thetae * Thetae);
ninterp = 0.;
*dnmax = 0.;
for (l = 0; l <= N_ESAMP; l++) {
dn = F_eval(Thetae, Bmag,
exp(j * dlnu +
lnu_min)) / (exp(wgt[l]) +
1.e-100);
if (dn > *dnmax)
*dnmax = dn;
ninterp += dlnu * dn;
}
ninterp *= dx[1] * dx[2] * dx[3] * L_unit * L_unit * L_unit
* M_SQRT2 * EE * EE * EE / (27. * ME * CL * CL)
* 1. / HPL;
} else {
if (isinf(nint[l]) || isinf(nint[l + 1])) {
ninterp = 0.;
*dnmax = 0.;
} else {
ninterp =
exp((1. - dl) * nint[l] + dl * nint[l + 1]);
*dnmax =
exp((1. - dl) * dndlnu_max[l] +
dl * dndlnu_max[l + 1]);
}
}
K2 = K2_eval(Thetae);
if (K2 == 0.) {
*nz = 0.;
*dnmax = 0.;
return;
}
*nz = geom[i][j].g * Ne * Bmag * Thetae * Thetae * ninterp / K2;
if (*nz > Ns * log(NUMAX / NUMIN)) {
fprintf(stderr,
"Something very wrong in zone %d %d: \nB=%g Thetae=%g K2=%g ninterp=%g\n\n",
i, j, Bmag, Thetae, K2, ninterp);
*nz = 0.;
*dnmax = 0.;
}
return;
}
int zone_flag;
int get_zone(int *i, int *j, double *dnmax)
{
/* Return the next zone and the number of superphotons that need to be *
* generated in it. */
int in2gen;
double n2gen;
static int zi = 0;
static int zj = -1;
zone_flag = 1;
zj++;
if (zj >= N2) {
zj = 0;
zi++;
if (zi >= N1) {
in2gen = 1;
*i = N1;
return 1;
}
}
init_zone(zi, zj, &n2gen, dnmax);
if (fmod(n2gen, 1.) > monty_rand()) {
in2gen = (int) n2gen + 1;
} else {
in2gen = (int) n2gen;
}
*i = zi;
*j = zj;
return in2gen;
}
void sample_zone_photon(int i, int j, double dnmax, struct of_photon *ph)
{
/* Set all initial superphoton attributes */
int l;
double K_tetrad[NDIM], tmpK[NDIM], E, Nln;
double nu, th, cth, sth, phi, sphi, cphi, jmax, weight;
double Ne, Thetae, Bmag, Ucon[NDIM], Bcon[NDIM], bhat[NDIM];
static double Econ[NDIM][NDIM], Ecov[NDIM][NDIM];
coord(i, j, ph->X);
Nln = lnu_max - lnu_min;
get_fluid_zone(i, j, &Ne, &Thetae, &Bmag, Ucon, Bcon);
/* Sample from superphoton distribution in current simulation zone */
do {
nu = exp(monty_rand() * Nln + lnu_min);
weight = linear_interp_weight(nu);
} while (monty_rand() >
(F_eval(Thetae, Bmag, nu) / (weight + 1.e-100)) / dnmax);
ph->w = weight;
jmax = jnu_synch(nu, Ne, Thetae, Bmag, M_PI / 2.);
do {
cth = 2. * monty_rand() - 1.;
th = acos(cth);
} while (monty_rand() >
jnu_synch(nu, Ne, Thetae, Bmag, th) / jmax);
sth = sqrt(1. - cth * cth);
phi = 2. * M_PI * monty_rand();
cphi = cos(phi);
sphi = sin(phi);
E = nu * HPL / (ME * CL * CL);
K_tetrad[0] = E;
K_tetrad[1] = E * cth;
K_tetrad[2] = E * cphi * sth;
K_tetrad[3] = E * sphi * sth;
if (zone_flag) { /* first photon created in this zone, so make the tetrad */
if (Bmag > 0.) {
for (l = 0; l < NDIM; l++)
bhat[l] = Bcon[l] * B_unit / Bmag;
} else {
for (l = 1; l < NDIM; l++)
bhat[l] = 0.;
bhat[1] = 1.;
}
make_tetrad(Ucon, bhat, geom[i][j].gcov, Econ, Ecov);
zone_flag = 0;
}
tetrad_to_coordinate(Econ, K_tetrad, ph->K);
K_tetrad[0] *= -1.;
tetrad_to_coordinate(Ecov, K_tetrad, tmpK);
ph->E = ph->E0 = ph->E0s = -tmpK[0];
ph->L = tmpK[3];
ph->tau_scatt = 0.;
ph->tau_abs = 0.;
ph->X1i = ph->X[1];
ph->X2i = ph->X[2];
ph->nscatt = 0;
ph->ne0 = Ne;
ph->b0 = Bmag;
ph->thetae0 = Thetae;
return;
}
void Xtoij(double X[NDIM], int *i, int *j, double del[NDIM])
{
*i = (int) ((X[1] - startx[1]) / dx[1] - 0.5 + 1000) - 1000;
*j = (int) ((X[2] - startx[2]) / dx[2] - 0.5 + 1000) - 1000;
if (*i < 0) {
*i = 0;
del[1] = 0.;
} else if (*i > N1 - 2) {
*i = N1 - 2;
del[1] = 1.;
} else {
del[1] = (X[1] - ((*i + 0.5) * dx[1] + startx[1])) / dx[1];
}
if (*j < 0) {
*j = 0;
del[2] = 0.;
} else if (*j > N2 - 2) {
*j = N2 - 2;
del[2] = 1.;
} else {
del[2] = (X[2] - ((*j + 0.5) * dx[2] + startx[2])) / dx[2];
}
return;
}
/* return boyer-lindquist coordinate of point */
void bl_coord(double *X, double *r, double *th)
{
*r = exp(X[1]) + R0;
*th = M_PI * X[2] + ((1. - hslope) / 2.) * sin(2. * M_PI * X[2]);
return;
}
void coord(int i, int j, double *X)
{
/* returns zone-centered values for coordinates */
X[0] = startx[0];
X[1] = startx[1] + (i + 0.5) * dx[1];
X[2] = startx[2] + (j + 0.5) * dx[2];
X[3] = startx[3];
return;
}
void set_units(char *munitstr)
{
double MBH;
/* set black hole mass */
/** could be read in from file here,
along with M_unit and other parameters **/
MBH = 4.e6;
sscanf(munitstr, "%lf", &M_unit);
/** input parameters appropriate to Sgr A* **/
MBH *= MSUN;
/** from this, calculate units of length, time, mass,
and derivative units **/
L_unit = GNEWT * MBH / (CL * CL);
T_unit = L_unit / CL;
fprintf(stderr, "\nUNITS\n");
fprintf(stderr, "L,T,M: %g %g %g\n", L_unit, T_unit, M_unit);
RHO_unit = M_unit / pow(L_unit, 3);
U_unit = RHO_unit * CL * CL;
B_unit = CL * sqrt(4. * M_PI * RHO_unit);
fprintf(stderr, "rho,u,B: %g %g %g\n", RHO_unit, U_unit, B_unit);
Ne_unit = RHO_unit / (MP + ME);
max_tau_scatt = (6. * L_unit) * RHO_unit * 0.4;
fprintf(stderr, "max_tau_scatt: %g\n", max_tau_scatt);
}
/* set up all grid functions */
void init_geometry()
{
int i, j;
double X[NDIM];
for (i = 0; i < N1; i++) {
for (j = 0; j < N2; j++) {
/* zone-centered */
coord(i, j, X);
gcov_func(X, geom[i][j].gcov);
geom[i][j].g = gdet_func(geom[i][j].gcov);
gcon_func(X, geom[i][j].gcon);
}
}
/* done! */
}
/*
return solid angle between points x2i, x2f
and over all x3.
*/
double dOmega_func(double x2i, double x2f)
{
double dO;
dO = 2. * M_PI *
(-cos(M_PI * x2f + 0.5 * (1. - hslope) * sin(2 * M_PI * x2f))
+ cos(M_PI * x2i + 0.5 * (1. - hslope) * sin(2 * M_PI * x2i))
);
return (dO);
}
static void *malloc_rank1(int n1, int size)
{
void *A;
if ((A = (void *) malloc(n1 * size)) == NULL) {
fprintf(stderr, "malloc failure in malloc_rank1\n");
exit(123);
}
return A;
}
static void **malloc_rank2(int n1, int n2, int size)
{
void **A;
int i;
if ((A = (void **) malloc(n1 * sizeof(void *))) == NULL) {
fprintf(stderr, "malloc failure in malloc_rank2\n");
exit(124);
}
for (i = 0; i < n1; i++) {
A[i] = malloc_rank1(n2, size);
}
return A;
}
static double **malloc_rank2_cont(int n1, int n2)
{
double **A;
double *space;
int i;
space = malloc_rank1(n1 * n2, sizeof(double));
A = malloc_rank1(n1, sizeof(double *));
for (i = 0; i < n1; i++)
A[i] = &(space[i * n2]);
return A;
}
void init_storage(void)
{
int i;
p = malloc_rank1(NPRIM, sizeof(double *));
for (i = 0; i < NPRIM; i++)
p[i] = (double **) malloc_rank2_cont(N1, N2);
geom =
(struct of_geom **) malloc_rank2(N1, N2,
sizeof(struct of_geom));
return;
}