-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetectProbe.m
431 lines (402 loc) · 19.7 KB
/
detectProbe.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
function [ matches_filtered, matches ] = detectProbe(...
I, probe, probe_color_distributions, rgb_sigma_polyfit, params, varargin...
)
% DETECTPROBE Locate the probe object in an image
%
% ## Syntax
% matches_filtered = detectProbe(...
% I, probe, probe_color_distributions, rgb_sigma_polyfit, params [, verbose]...
% )
% [ matches_filtered, matches ] = detectProbe(...
% I, probe, probe_color_distributions, rgb_sigma_polyfit, params [, verbose]...
% )
%
% ## Description
% matches_filtered = detectProbe( I, probe, probe_color_distributions, params [, verbose] )
% Returns structure vectors describing the probe's location in the image.
% [ matches_filtered, matches ] = detectProbe(...
% I, probe, probe_color_distributions, params [, verbose]...
% )
% Additionally returns a structure array describing all points detected
% in the image, not only those which were identified with the probe.
%
% ## Input Arguments
%
% I -- Image containing the probe
% An RGB image containing the probe.
%
% probe -- Probe measurements
% Refer to the documentation of 'CreateProbeDetectionModel.m' for
% details.
%
% probe_color_distributions -- Probe colour estimators
% Discretized density estimators of image hue values corresponding to the
% different coloured bands on the probe, in the same order (starting from
% the active tip of the probe). The i-th column of this 2D array stores
% the estimator for the i-th colour class of probe segments.
%
% rgb_sigma_polyfit -- Camera RGB noise model
% A parameter passed indirectly to 'extractBinaryRegions()'. As described
% in the documentation of 'extractBinaryRegions()'. An empty array can be
% passed instead, if `params.uniform_background_initial` and
% `params.uniform_background_final` are both `false`.
%
% params -- Fixed parameters
% Parameters that should be stable across a variety of input images and
% probe models. `params` is a structure containing the following fields:
% - request_bounding_region: A logical scalar indicating whether to open
% a figure and have the user draw a bounding polygon for the probe
% (`true`), or to automatically detect the region(s) containing the
% probe (`false`).
% - uniform_background_initial: If `true`, assume a uniform colour
% distribution for the image background when finding the bounding
% region(s) containing the probe. `uniform_background_initial`
% determines whether the `rgb_sigma_polyfit` parameter of
% 'extractBinaryRegions()' is passed empty. Refer to the documentation
% of 'extractBinaryRegions.m' for details.
% - detectBoundingBoxesParams: A structure of fixed parameters passed to
% 'detectBoundingBoxes()'. Refer the documentation of
% 'detectBoundingBoxes.m' for details. This field need not exist if
% `request_bounding_region` is `true`.
% - uniform_background_final: Similar to `uniform_background_initial`,
% but influences the detection of the probe within its bounding
% regions.
% - detectWithinBoundingBoxParams: A structure of fixed parameters passed
% to 'detectWithinBoundingBox()'. Refer the documentation of
% 'detectWithinBoundingBox.m' for details.
% - detected_point_alignment_outlier_threshold: The
% `point_alignment_outlier_threshold` argument of 'bilateralModel()',
% which controls the pairing of points detected above and below the
% probe's line of symmetry.
% - matching: A structure containing parameters for data association
% between the measurements of the probe, and the edges between coloured
% bands of the probe detected in the image. `matching` has the
% following fields, all of which are used as parameters of
% 'matchProbeLengthsRandom()'. Refer to the documentation of
% 'matchProbeLengthsRandom.m' for details.
% - subject_gap_cost_detection: The `subject_gap_cost` parameter.
% - query_gap_cost_detection: The `query_gap_cost` parameter.
% - direction_threshold: The `thresholds.direction_threshold` parameter.
% - inlier_threshold: The `thresholds.inlier_threshold`
% parameter.
% - local_alignment_threshold: The
% `thresholds.local_alignment_threshold` parameter.
%
% verbose -- Debugging flags
% If recognized fields of `verbose` are true, corresponding graphical or
% console output will be generated for debugging purposes. Note that
% there are two fields which are structures of debugging flags:
% `detectBoundingBoxesVerbose`, and `detectWithinBoundingBoxVerbose`,
% which become the `verbose` arguments of 'detectBoundingBoxes()' and
% 'detectWithinBoundingBox()', respectively. Both of these fields are
% optional.
%
% All debugging flags default to false if `verbose` is not passed.
%
% ## Output Arguments
%
% matches_filtered -- Detected and validated edges between coloured bands
% A cell vector of structure vectors. The i-th cell contains a copy of
% the i-th column of `matches`, with detected edges that were not matched
% to probe measurements filtered out. In other words, this is a version
% of 'matches' without elements containing `NaN` values for any fields.
%
% matches -- All detected edges between coloured bands
% A 2D structure array describing the matches found from detected edges
% between bands of colour on the probe in the image to user-provided
% measurements of the edges between probe colour bands. Each element
% contains the match information for one detected edge. If no suitable
% match was found for a given edge detected in the image, the
% corresponding field values will be `NaN`. The fields of the structure
% array are as follows:
% - index: The index of the detected edge between two bands of colour
% on the probe. The indices of edges correspond to the order of the
% edges along the major axis of the probe in the image, from left to
% right.
% - lengthAlongPCAMajorAxis: The pixel distance along the major axis of
% the probe from the first detected edge to the current edge. For
% more information, refer to the documentation of the `lengths`
% output argument of 'bilateralModel()'.
% - pointAbovePCAMajorAxis: A two-element row vector containing the detected
% position of the point where the edge meets the lower border of the
% probe in the image. (This is the point "above" the axis of the
% probe in the sense that it has a pixel y-coordinate that is larger
% than that of the axis at the same pixel x-coordinate.)
% - pointBelowPCAMajorAxis: Similar to 'pointAbovePCAMajorAxis', but contains
% the detected position of the point where the edge meets the upper
% border of the probe in the image.
% - matchedLengthIndex: The index of the edge between coloured bands of
% the physical probe that is matched with the detected edge.
% Specifically, this is the index into the user-provided measurements
% of the probe, `probe.lengths` and `probe.widths`, where `probe` is
% a structure input and output by 'CreateProbeDetectionModel.m'.
% - matchedLength: The value of `probe.lengths(matchedLengthIndex)`, where
% `probe` is a structure input and output by
% 'CreateProbeDetectionModel.m'.
% - matchedWidth: The value of `probe.widths(matchedLengthIndex)`, where
% `probe` is a structure input and output by
% 'CreateProbeDetectionModel.m'.
%
% Each column of `matches` is a separate data association hypothesis - A
% possible alignment of the detected edges to the edges of the probe.
% Consequently, some columns may have elements in common. Data
% association hypotheses are selected for having the largest number of
% consistent pairings between detected and known edges, as computed by
% 'matchProbeLengthsRandom()'.
%
% ## Algorithm
%
% Probe detection begins with two colour detection passes: First, coloured
% regions which may correspond to probe bands are detected in the image,
% and bounding boxes are created to surround them. Alternatively, the user
% can provide a bounding region, as determined by
% `params.request_bounding_region`. Second, the same colours are detected
% within the bounding boxes, normally using less conservative parameters in
% order to avoid eroding the detected probe regions.
%
% Next, coloured regions are interpreted as bands along the length of the
% probe, and the endpoints of edges between bands are extracted from the
% borders of the coloured regions. The resulting sequence of measurements
% in the image is then matched to the user-provided measurements of the
% probe. At the end of this data association step, the probe could be
% overlayed on the image, but its location in 3D space is undetermined.
%
% ## Notes
% - If `params.request_bounding_region` is `true`, this function will open
% a figure to collect a region of interest from the user. Therefore,
% `params.request_bounding_region` should be `false` when this function
% is intended to be non-interactive.
%
% See also roipoly, detectBoundingBoxes, detectWithinBoundingBox, bilateralModel, labelDetectedColors, matchProbeLengthsRandom
% Bernard Llanos
% Supervised by Dr. Y.H. Yang
% University of Alberta, Department of Computing Science
% File created January 9, 2018
%% Parse input arguments
nargoutchk(1,2);
narginchk(5,6);
detectBoundingBoxesVerbose = [];
detectWithinBoundingBoxVerbose = [];
if ~isempty(varargin)
verbose = varargin{1};
if isfield(verbose, 'detectBoundingBoxesVerbose')
detectBoundingBoxesVerbose = verbose.detectBoundingBoxesVerbose;
end
if isfield(verbose, 'detectWithinBoundingBoxVerbose')
detectWithinBoundingBoxVerbose = verbose.detectWithinBoundingBoxVerbose;
end
display_detected_model_from_image = verbose.display_detected_model_from_image;
display_final_clipped_regions_colored = verbose.display_final_clipped_regions_colored;
verbose_detected_point_sequence_matching = verbose.verbose_detected_point_sequence_matching;
display_detected_model_matching = verbose.display_detected_model_matching;
warnings = verbose.warnings;
else
display_detected_model_from_image = false;
display_final_clipped_regions_colored = false;
verbose_detected_point_sequence_matching = false;
display_detected_model_matching = false;
warnings = false;
end
if isempty(detectBoundingBoxesVerbose)
detectBoundingBoxesVerbose.display_original_image = false;
detectBoundingBoxesVerbose.display_hue_image = false;
detectBoundingBoxesVerbose.display_saturation_image = false;
detectBoundingBoxesVerbose.plot_hue_estimator = false;
detectBoundingBoxesVerbose.plot_hue_classifier = false;
detectBoundingBoxesVerbose.display_distribution_backprojections = false;
detectBoundingBoxesVerbose.display_binary_images = false;
detectBoundingBoxesVerbose.verbose_region_filtering = false;
detectBoundingBoxesVerbose.display_region_expansion = false;
end
if isempty(detectWithinBoundingBoxVerbose)
detectWithinBoundingBoxVerbose.display_hue_image = false;
detectWithinBoundingBoxVerbose.display_saturation_image = false;
detectWithinBoundingBoxVerbose.plot_hue_estimator = false;
detectWithinBoundingBoxVerbose.plot_hue_classifier = false;
detectWithinBoundingBoxVerbose.display_distribution_backprojections = false;
detectWithinBoundingBoxVerbose.display_binary_images = false;
detectWithinBoundingBoxVerbose.verbose_region_filtering = false;
detectWithinBoundingBoxVerbose.display_regions_colored = false;
detectWithinBoundingBoxVerbose.display_band_edge_extraction = false;
detectWithinBoundingBoxVerbose.verbose_edge_endpoint_extraction = false;
end
image_width = size(I, 2);
image_height = size(I, 1);
image_n_channels = size(I, 3);
if image_n_channels ~= 3
error('A 3-channel RGB image is required.')
end
%% Manual bounding region selection (if enabled)
if params.request_bounding_region
figure
imshow(I);
title('Select a bounding region')
probe_mask_initial = roipoly;
if isempty(probe_mask_initial)
error('Bounding region selection aborted. Either try again, or set `params.request_bounding_region` to false.');
end
else
if params.uniform_background_initial
rgb_sigma_polyfit_initial = [];
else
rgb_sigma_polyfit_initial = rgb_sigma_polyfit;
end
probe_mask_initial = detectBoundingBoxes(...
I, probe,...
probe_color_distributions, rgb_sigma_polyfit_initial,...
params.detectBoundingBoxesParams, detectBoundingBoxesVerbose...
);
end
%% Detect interest points and refined probe colour regions within the bounding box
if params.uniform_background_final
rgb_sigma_polyfit_final = [];
else
rgb_sigma_polyfit_final = rgb_sigma_polyfit;
end
[...
interest_points_detected, probe_regions_bw_final_filtered...
] = detectWithinBoundingBox(...
I, probe, probe_mask_initial,...
probe_color_distributions, rgb_sigma_polyfit_final,...
params.detectWithinBoundingBoxParams, detectWithinBoundingBoxVerbose...
);
if size(interest_points_detected, 1) < 3
% At least 3 points are needed to perform 2D PCA in bilateralModel()
error('PROBE:InsufficientPointsDetected', 'Fewer than three interest points were detected.')
end
%% Organize the detected points into per-edge pairs, and filter outliers
% In contrast to probe model creation, the probe tips are not extracted,
% and therefore not expected as part of the output of `bilateralModel`. The
% `distinguish_tips` parameter is therefore set to `false`.
[...
model_from_image_detected_pca_space,...
image_lengths_detected,...
model_from_image_detected_axes,...
model_from_image_detected,...
model_from_image_transform...
] = bilateralModel(...
interest_points_detected, params.detected_point_alignment_outlier_threshold, false...
);
n_detected_band_edges = length(image_lengths_detected);
if display_detected_model_from_image
fg = figure;
imshow(I);
plotBilateralModel( model_from_image_detected, model_from_image_detected_axes, [image_height, image_width], [], fg );
title('Classified detected interest points (green, red = above/below first PCA component; yellow = unmatched)');
end
if warnings && ~isempty(model_from_image_detected.unmatched)
warning(sprintf(['Not all detected probe colour band junctions are marked with two points - One on each edge of the probe.\n',...
'The output of probe colour band junction detection may have been quite messy.\n',...
'Consider adjusting edge detection and edge endpoint detection parameters,\n',...
'or increasing the outlier detection threshold used when pairing points.'])); %#ok<SPWRN>
end
%% Label the colours between detected probe band edges
if n_detected_band_edges < 2
% At least 2 edges are needed by labelDetectedColors()
error('PROBE:InsufficientEdgesDetected', 'Fewer than two edges between coloured bands were detected.')
end
[...
probe_colors_detected_left, probe_colors_detected_right...
] = labelDetectedColors(...
I, probe_color_distributions,...
probe_regions_bw_final_filtered,...
model_from_image_detected_pca_space, model_from_image_detected,...
model_from_image_transform, model_from_image_detected_axes(1, :),...
display_final_clipped_regions_colored...
);
%% Match model extracted from the image to the user-supplied measurements of the probe
% Note that the probe tips should never be in the sequence of interest points
% detected in the image, because they are not adjacent to any coloured
% bands. But, in case they are, match them and then remove them from the
% matched sequence.
matching_start_index = 1;
matching_end_index = length(probe.lengths);
probe_lengths_for_matching = probe.lengths(matching_start_index:matching_end_index);
subject = [probe_lengths_for_matching, zeros(matching_end_index - matching_start_index + 1, 2)];
% Colours to the left of each band transition
subject((matching_start_index + 1):matching_end_index, 2) = probe.colors;
% Colours to the right of each band transition
subject(matching_start_index:(matching_end_index - 1), 3) = probe.colors;
query = [image_lengths_detected, probe_colors_detected_left, probe_colors_detected_right];
alignment_thresholds.direction_threshold = params.matching.direction_threshold;
alignment_thresholds.inlier_threshold = params.matching.inlier_threshold;
alignment_thresholds.local_alignment_threshold = params.matching.local_alignment_threshold;
image_to_measured_matches_detected = matchProbeLengthsRandom(...
subject(:, 1),...
query(:, 1),...
params.matching.subject_gap_cost_detection,...
params.matching.query_gap_cost_detection,...
subject(:, 2:3),...
query(:, 2:3),...
alignment_thresholds,...
verbose_detected_point_sequence_matching...
);
% Remove probe tips
tip_filter = image_to_measured_matches_detected == matching_start_index;
if any(any(tip_filter))
if warnings
warning('Removing detected interest points which were matched to the start of the probe.')
end
image_to_measured_matches_detected(tip_filter) = 0;
end
tip_filter = image_to_measured_matches_detected == matching_end_index;
if any(any(tip_filter))
if warnings
warning('Removing detected interest points which were matched to the end of the probe.')
end
image_to_measured_matches_detected(tip_filter) = 0;
end
%% Output
probe_widths_for_matching = probe.widths(matching_start_index:matching_end_index);
image_to_measured_matches_detected_filter = logical(image_to_measured_matches_detected);
image_to_measured_matches_detected(~image_to_measured_matches_detected_filter) = NaN;
n_hypotheses = size(image_to_measured_matches_detected_filter, 2);
if ~all(all(image_to_measured_matches_detected_filter))
if warnings
warning('Some detected interest points in the image were not matched to known probe measurements.')
end
matched_lengths = nan(n_detected_band_edges, n_hypotheses);
matched_lengths(image_to_measured_matches_detected_filter) =...
probe_lengths_for_matching(...
image_to_measured_matches_detected(...
image_to_measured_matches_detected_filter...
)...
);
matched_widths = nan(n_detected_band_edges, n_hypotheses);
matched_widths(image_to_measured_matches_detected_filter) =...
probe_widths_for_matching(...
image_to_measured_matches_detected(...
image_to_measured_matches_detected_filter...
)...
);
else
matched_lengths = probe_lengths_for_matching(image_to_measured_matches_detected);
matched_widths = probe_widths_for_matching(image_to_measured_matches_detected);
end
matches = struct(...
'index', repmat(num2cell((1:n_detected_band_edges).'), 1, n_hypotheses),...
'lengthAlongPCAMajorAxis', repmat(num2cell(image_lengths_detected), 1, n_hypotheses),...
'pointAbovePCAMajorAxis', repmat(num2cell(model_from_image_detected.above, 2), 1, n_hypotheses),...
'pointBelowPCAMajorAxis', repmat(num2cell(model_from_image_detected.below, 2), 1, n_hypotheses),...
'matchedLengthIndex', num2cell(...
image_to_measured_matches_detected + (matching_start_index - 1)...
),...
'matchedLength', num2cell(matched_lengths),...
'matchedWidth', num2cell(matched_widths)...
);
if display_detected_model_matching
disp('Match between detected interest points and probe measurements:')
probe_detection_matches_display =...
rmfield(matches, 'lengthAlongPCAMajorAxis');
probe_detection_matches_display =...
rmfield(probe_detection_matches_display, 'matchedWidth');
for hyp = 1:n_hypotheses
fprintf('Hypothesis: %d\n', hyp)
probe_detection_matches_display_hyp = struct2table(probe_detection_matches_display(:, hyp));
disp(probe_detection_matches_display_hyp);
end
end
matches_filtered = cell(n_hypotheses, 1);
for hyp = 1:n_hypotheses
matches_filtered{hyp} = matches(image_to_measured_matches_detected_filter(:, hyp), hyp);
end