-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextractInterestPoints.m
132 lines (121 loc) · 5.26 KB
/
extractInterestPoints.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
function [ points, search_windows, corners ] = extractInterestPoints( I_annotation, varargin )
% EXTRACTINTERESTPOINTS Read and refine user-marked corner points
%
% ## Syntax
% points = extractInterestPoints( I_annotation )
% points = extractInterestPoints( I_annotation, I, search_width )
% [ points, search_windows ] = extractInterestPoints( I_annotation, I, search_width )
% [ points, search_windows, corners ] = extractInterestPoints( I_annotation, I, search_width )
%
% ## Description
% points = extractInterestPoints( I_annotation )
% Returns the centers of nonzero areas in the input image.
%
% points = extractInterestPoints( I_annotation, I, search_width )
% Returns corner feature locations within search windows of the centers
% of nonzero areas in the input annotation image.
%
% [ points, search_windows ] = extractInterestPoints( I_annotation, I, search_width )
% Additionally returns the search windows used to find corner features.
%
% [ points, search_windows, corners ] = extractInterestPoints( I_annotation, I, search_width )
% Additionally returns all corner features within the search windows.
%
% ## Input Arguments
%
% I_annotation -- Annotation image
% An h x w array, containing mostly zero entries and a few nonzero blobs.
% Conceptually, `I_annotation` stores user-marked interest points.
%
% I -- Base image
% An h x w x (1|3) array representing the image corresponding to the
% annotations in `I_annotation`.
%
% search_width -- Search window half width
% An positive integer specifying how far from each center of an
% annotation to search for corner feature points. A square search window
% of at most size `2 x search_width + 1` will be constructed around each
% center pixel. Search windows will be constrained in size such that the
% search windows of multiple annotation centers do not overlap.
%
% ## Output Arguments
%
% points -- Adjusted annotation points
% An n x 2 array, where 'n' is the number of distinct nonzero regions in
% `I_annotation`, and where the columns store pixel x and y coordinates,
% respectively.
%
% The function computes an initial value for `points` by applying MATLAB's
% morphological 'shrink' operation to `I_annotation` and extracting the
% coordinates of the resulting nonzero pixels. If `I` and `search_width`
% are passed, then the locations in `points` are adjusted to be the
% strongest corner features within the surrounding search windows. If a
% search window around a location in `points` does not contain any
% significant features, the location is returned as is.
%
% search_windows -- Corner feature search regions
% An n x 4 array, where `search_windows(i, :)` is the rectangular region
% of interest used to locate `points(i, :)`. `search_windows(i, :)` is of
% the form `[x y width height]`.
%
% corners -- Detected corner features
% An n x 1 cell vector, where `corners{i}` contains all corner features
% detected in `search_windows(i, :)`, the strongest of which is
% `points(i, :)`. `corners{i}` is a `cornerPoints` object.
%
% ## Notes
% - Corner features are currently detected with MATLAB's implementation of
% minimum eigenvalue algorithm, `detectMinEigenFeatures`, on a greyscale
% version of `I` obtained with `rgb2gray`.
%
% See also bwmorph, detectMinEigenFeatures, cornerPoints, rgb2gray
% Bernard Llanos
% Spring 2016 research assistantship supervised by Dr. Y.H. Yang
% University of Alberta, Department of Computing Science
% File created August 2, 2016
nargoutchk(1, 3);
narginchk(1, 3);
if nargin == 2
error('`I` and `search_width` must either both be passed or both omitted.');
end
if nargout > 1 && nargin ~= 3
error('`Search windows cannot be output unless `I` and `search_width` are passed.');
end
I_annotation = logical(I_annotation);
[annotations_y, annotations_x] = find(bwmorph(I_annotation, 'shrink', Inf));
points = [annotations_x, annotations_y];
if nargin > 1
I = varargin{1};
if size(I, 3) > 1
I_grey = rgb2gray(I);
else
I_grey = I;
end
image_width = size(I, 2);
image_height = size(I, 1);
search_width = varargin{2};
if search_width < 0 || round(search_width) ~= search_width
error('`search_width` must be an integer greater than zero.');
end
n_annotations = length(annotations_x);
corners = cell(n_annotations, 1);
search_windows = zeros(n_annotations, 4);
for i = 1:n_annotations
x_separation = annotations_x([1:(i-1), (i+1):end]) - annotations_x(i);
y_separation = annotations_y([1:(i-1), (i+1):end]) - annotations_y(i);
distances = sqrt(x_separation .^ 2 + y_separation .^ 2);
search_width_i = min(floor((min(distances) - 1) / 2), search_width);
search_width_i = max(0, search_width_i);
max_width = search_width_i * 2 + 1;
x_min = max(1, annotations_x(i) - search_width_i);
width_x = min(max_width, max(1, image_width - x_min));
y_min = max(1, annotations_y(i) - search_width_i);
width_y = min(max_width, max(1, image_height - y_min));
search_windows(i, :) = [x_min, y_min, width_x, width_y];
corners{i} = detectMinEigenFeatures(I_grey, 'ROI', search_windows(i, :));
if ~isempty(corners{i})
points(i, :) = corners{i}.selectStrongest(1).Location;
end
end
end
end