-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotHueClassifier.m
126 lines (117 loc) · 3.56 KB
/
plotHueClassifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function [ fg ] = plotHueClassifier( h_classifiers, n_classes, varargin )
% PLOTHUECLASSIFIER Visualize hue classifiers
%
% ## Syntax
% plotHueClassifier(...
% h_classifiers, n_classes [, legend_names, line_specs, fg]...
% )
% fg = plotHueClassifier(...
% h_classifiers, n_classes [, legend_names, line_specs, fg]...
% )
%
% ## Description
% plotHueClassifier(...
% h_classifiers, n_classes [, legend_names, line_specs, fg]...
% )
% Creates a figure or updates an existing figure with plots of hue
% classifiers, against a background of hue values.
%
% fg = plotHueClassifier(...
% h_classifiers, n_classes [, legend_names, line_specs, fg]...
% )
% Additionally returns the handle of the figure which was created or updated.
%
% ## Input Arguments
%
% h_classifiers -- Evaluated hue density estimators
% A horizontal concatenation of one or more instances of the `classifier`
% output argument of `mlDiscreteClassifier`. In other words,
% `h_classifiers(:,i)` contains the i-th classifier to plot.
%
% n_classes -- Number of classes
% The number of hue classes, not including the "background class". The
% background class is assumed to have an index of zero, and the classes
% of interest have indices from one, up to, and including, `n_classes`.
% `n_classes` determines the scale of the plot, and makes it obvious if
% some classes are not used by the classifiers.
%
% legend_names -- Plot legend entries
% A cell vector with a length equal to the number of columns in
% `h_classifiers`, where the i-th cell contains the string to use as
% the legend entry for the plot of `h_classifiers(:,i)`.
%
% If empty or not passed, no legend is added to the plot.
%
% line_specs -- Plot line specifications
% A cell vector where each cell contains a valid line spec string (i.e. a
% string that could be the value of a 'LineSpec' argument passed to
% `plot`).
%
% Hue classifiers will be plotted with line specs that cycle through the
% elements of `line_specs`.
%
% Defaults to `{'k-'}` if empty or not passed.
%
% fg -- Figure handle
% A handle to the figure to update.
%
% If not passed, a new figure is created.
%
% ## Output Arguments
%
% fg -- Figure handle
% A handle to the figure updated with the plot output.
%
% ## Notes
% - The caller is responsible for adding a plot title. Axis labels are
% added by this function.
%
% See also hueVariableKernelDensityEstimator, hueGaussianDensityEstimator, hsv2rgb, plot
% Bernard Llanos
% Supervised by Dr. Y.H. Yang
% University of Alberta, Department of Computing Science
% File created May 26, 2017
nargoutchk(0, 1);
narginchk(2, 5);
if ~isempty(varargin)
legend_names = varargin{1};
else
legend_names = {};
end
if length(varargin) > 1
line_specs = varargin{2};
else
line_specs = {'k-'};
end
if length(varargin) > 2
fg = varargin{3};
if ~ishandle(fg)
error('The `fg` optional input argument must be a valid figure handle.');
end
figure(fg);
else
fg = figure;
end
h_inc = hueSamplingParams( h_classifiers(:, 1) );
h = (0:h_inc:1).';
% Create a background rainbow
background = cat(3, repmat(h.', n_classes, 1), ones(n_classes, length(h), 2));
background = hsv2rgb(background);
ax = axes(fg);
image(ax, [0, 1], [0.5, n_classes], background)
ax.YDir = 'normal';
hold on
for i = 1:size(h_classifiers, 2)
plot(...
h, h_classifiers(:, i),...
line_specs{mod(i - 1, length(line_specs)) + 1},...
'LineWidth', 2.0...
)
end
hold off
if ~isempty(legend_names)
legend(legend_names{:});
end
xlabel('Hue, \theta (range [0, 1])')
ylabel('Class')
end