-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
110 lines (93 loc) · 4.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import time
import os
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from datasets import FCVID, miniKINETICS, ACTNET
from model import ModelGCNConcAfter as Model
parser = argparse.ArgumentParser(description='GCN Video Classification')
parser.add_argument('--gcn_layers', type=int, default=2, help='number of gcn layers')
parser.add_argument('--dataset', default='actnet', choices=['fcvid', 'minikinetics', 'actnet'])
parser.add_argument('--dataset_root', default='/home/dimidask/Projects/ActivityNet120', help='dataset root directory')
parser.add_argument('--lr', type=float, default=1e-4, help='initial learning rate')
parser.add_argument('--milestones', nargs="+", type=int, default=[110, 160], help='milestones of learning decay')
parser.add_argument('--num_epochs', type=int, default=200, help='number of epochs to train')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--num_objects', type=int, default=50, help='number of objects with best DoC')
parser.add_argument('--num_workers', type=int, default=4, help='number of workers for data loader')
parser.add_argument('--ext_method', default='VIT', choices=['VIT', 'RESNET'], help='Extraction method for features')
parser.add_argument('--resume', default=None, help='checkpoint to resume training')
parser.add_argument('--save_interval', type=int, default=10, help='interval for saving models (epochs)')
parser.add_argument('--save_folder', default='weights', help='directory to save checkpoints')
parser.add_argument('-v', '--verbose', action='store_true', help='show details')
args = parser.parse_args()
def train(model, loader, crit, opt, sched, device):
epoch_loss = 0
for i, batch in enumerate(loader):
feats, feat_global, label, _ = batch
feats = feats.to(device)
feat_global = feat_global.to(device)
label = label.to(device)
opt.zero_grad()
out_data = model(feats, feat_global, device)
loss = crit(out_data, label)
loss.backward()
opt.step()
epoch_loss += loss.item()
sched.step()
return epoch_loss / len(loader)
def main():
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
if args.dataset == 'fcvid':
dataset = FCVID(args.dataset_root, is_train=True, ext_method=args.ext_method)
crit = nn.BCEWithLogitsLoss()
elif args.dataset == 'actnet':
dataset = ACTNET(args.dataset_root, is_train=True, ext_method=args.ext_method)
crit = nn.BCEWithLogitsLoss()
elif args.dataset == 'minikinetics':
dataset = miniKINETICS(args.dataset_root, is_train=True, ext_method=args.ext_method)
crit = nn.CrossEntropyLoss()
else:
sys.exit("Unknown dataset!")
device = torch.device('cuda:0')
loader = DataLoader(dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True)
if args.verbose:
print("running on {}".format(device))
print("num samples={}".format(len(dataset)))
print("missing videos={}".format(dataset.num_missing))
start_epoch = 0
model = Model(args.gcn_layers, dataset.NUM_FEATS, dataset.NUM_CLASS).to(device)
opt = optim.Adam(model.parameters(), lr=args.lr)
sched = optim.lr_scheduler.MultiStepLR(opt, milestones=args.milestones)
if args.resume:
data = torch.load(args.resume)
start_epoch = data['epoch']
model.load_state_dict(data['model_state_dict'])
opt.load_state_dict(data['opt_state_dict'])
sched.load_state_dict(data['sched_state_dict'])
if args.verbose:
print("resuming from epoch {}".format(start_epoch))
model.train()
for epoch in range(start_epoch, args.num_epochs):
t0 = time.perf_counter()
loss = train(model, loader, crit, opt, sched, device)
t1 = time.perf_counter()
if (epoch + 1) % args.save_interval == 0:
sfnametmpl = 'model-{}-{:03d}.pt'
sfname = sfnametmpl.format(args.dataset, epoch + 1)
spth = os.path.join(args.save_folder, sfname)
torch.save({
'epoch': epoch + 1,
'loss': loss,
'model_state_dict': model.state_dict(),
'opt_state_dict': opt.state_dict(),
'sched_state_dict': sched.state_dict()
}, spth)
if args.verbose:
print("[epoch {}] loss={} dt={:.2f}sec".format(epoch + 1, loss, t1 - t0))
if __name__ == '__main__':
main()