-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
36 lines (26 loc) · 1.46 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
library(readr)
library(dplyr)
library(plotly)
library(shiny)
#data derived from https://github.com/GoogleCloudPlatform/covid-19-open-data
data_in <- as.data.frame(read_csv("GoogleBQ_reg_month_pop.csv"))
#add country code:
library(countrycode)
data_in$continent <- countrycode(sourcevar = data_in[, "countries_and_territories"],
origin = "country.name",
destination = "region")
#shiny
# Define server logic required to draw a histogram
shinyServer(function(input, output) {
output$scatterPlot <- renderPlotly({
data_plot <- data_in %>%
filter(month <= input$mth_to) %>% #mth_to is input
filter(!is.na(continent)) %>%
group_by(countries_and_territories, continent, pop_data_2019) %>%
summarise(cov19_cases_new=sum(new_confirmed_cases),cov19_decsd_new=sum(new_daily_deaths)) %>%
mutate(cov19_cases_new_rel=cov19_cases_new/pop_data_2019*100000, cov19_decsd_new_rel=cov19_decsd_new/pop_data_2019*100000)
plot_ly(data_plot, x = ~cov19_cases_new_rel, y = ~cov19_decsd_new_rel, type="scatter", color = ~continent,
mode = 'markers', hoverinfo = 'text',text = ~paste('</br> Country: ', countries_and_territories)) %>%
layout(xaxis = list(title="cumulative incidence rate per 100.000 people"), yaxis = list(title="cumulative death rate per 100.000 people"))
})
})