forked from alexattia/ExtendedTinyFaces
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
131 lines (119 loc) · 4.79 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import pandas as pd
import glob
data_folder = './tiny/data/widerface/WIDER_val/images/'
def get_folder_name(pic):
"""
Get folder name from the picture name
1_Handshaking_Handshaking_1_411.jpg -->1--Handshaking/
:param pic: picture name
:return: folder name
"""
x = pic.split('_')[1:3]
s = pic.split('_')[0]+ '--'+ '_'.join(sorted(set(x), key=x.index)) + '/'
if 'Demonstration' in s:
try:
s = s[:s.index('_')] + '/'
except ValueError:
pass
return s
def jaccard_distance(boxA, boxB):
"""
Calculate the Intersection over Union (IoU) of two bounding boxes.
:param bb1: list [x1, x2, y1, y2]
The (x1, y1) position is at the top left corner,
the (x2, y2) position is at the bottom right corner
:param bb2: list [x1, x2, y1, y2]
The (x1, y1) position is at the top left corner,
the (x2, y2) position is at the bottom right corner
:return: float in [0, 1]
"""
# determine the (x, y)-coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# compute the area of intersection rectangle
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# compute the area of both the prediction and ground-truth
# rectangles
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
return iou * (iou > 0.5)
def find_best_bbox(box, predicted_boxes):
"""
Find the corresponding predicted bounding box
compared to the ground truth
:param box: ground truth bounding box
:param predicted_boxes: list of predicted bounding boxes
:return: index of the corresponding bbox, jaccard distance
"""
if type(box) == list:
box = ' '.join(map(str,box))
(x1, y1, w, h) = map(int,box.split()[:4])
boxA = [x1, y1, x1+w, y1+h]
l = []
# boxB : [x1, x2, y1, y2] (top-left and bottom-right)
for boxB in predicted_boxes:
l.append(jaccard_distance(boxA, boxB))
if len(l) > 0:
return np.argmax(l), np.max(l)
else:
return -1, 0
def mean_jaccard(truth_boxes, predicted_boxes, only_tp=True, blurred=0):
"""
Compute the average Jaccard distance for the bounding boxes of
one picture.
:param truth_boxes: ground truth bounding boxes
:param predicted_boxes: predicted bounding boxes
:param only_tp: boolean to only keep true positive bounding bo
:return: mean jaccard and number of TP (None, if no TP found)
"""
l = []
for truth_box in truth_boxes:
if int(truth_box.split()[4]) >= blurred:
_, jd = find_best_bbox(truth_box, predicted_boxes)
l.append(jd)
if only_tp:
l = [k for k in l if k > 0]
if len(l) > 0:
return np.mean(l), len(l)
def compute_stats(data_dir, truth, predictions, blurred=0):
"""
Compute the mean Jaccard distance and the ratio of predicted bounding
boxes compared to the number of actual bounding boxes
:param data_dir: directory path with the pictures
:param truth: dict of actual annotations of the bounding boxes
d[name] = [(x1, y1, w, h, blur, expression, illumination, invalid, occlusion, pose)]
:param predictions: list of predicted bounding boxes
keeping the same order of glob.glob(pictures folder)
:param blurred: 0 for all faces, 1 for normal blurred faces, 2 for heavy blurred faces
:return: (len(pictures), 4) numpy array and the corresponding panda DataFrame
['mean Jaccard', 'Nb_Truth_Bboxes', 'Nb_Pred_Bboxes', 'Ratio_Bboxes']
"""
pictures = glob.glob(data_dir + '*')
n_pictures = len(pictures)
jaccard, n_truth_boxes, n_pred_boxes = [], [], []
a = np.zeros((n_pictures,4))
for idx in range(n_pictures):
truth_boxes = truth[pictures[idx].replace(data_folder, '')]
temp = mean_jaccard(truth_boxes, predictions[idx], blurred=blurred)
if temp:
mean_jac, nb_pred = temp
else:
mean_jac, nb_pred = None, 0
jaccard.append(mean_jac)
n_truth_boxes.append(len([k for k in truth_boxes if int(k.split()[4]) >= blurred]))
n_pred_boxes.append(nb_pred)
a[:,0] = jaccard
a[:,1] = n_truth_boxes
a[:,2] = n_pred_boxes
a[:,3] = a[:,2]/a[:,1]
df = pd.DataFrame(a, columns=['mJaccard', 'Nb_Truth_Bboxes', 'Nb_Pred_Bboxes', 'Ratio_Bboxes'])
df['Folder'] = data_dir.replace(data_folder, '')
return a, df