forked from nickhir/Chronophage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.R
172 lines (152 loc) · 6.49 KB
/
helper_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# easy function to plot heatmap for set of genes. each column is one cell
marker_heatmap <- function(seurat, markers, celltype, group.by, cap_value = NULL, cluster_rows_ = F, to_ggplot = T) {
library(ComplexHeatmap)
library(circlize)
# plot a heatmap, where each column is one cell! The cells are grouped and split according to the cluster they are from
ordered_index <- order([email protected][[group.by]])
c_split <- sort([email protected][[group.by]])
if (!all(markers %in% rownames(seurat@assays$RNA))) {
mising_genes <- paste(markers[!markers %in% rownames(seurat@assays$RNA)], sep = ", ")
celltype <- celltype[markers %in% rownames(seurat@assays$RNA)]
markers <- markers[markers %in% rownames(seurat@assays$RNA)]
print(str_interp("Not all markers occur in the data matrix of the seurat object. Specifically, ${mising_genes} are missing. Removing it and continuing"))
}
# get counts and perform gene wise scaling
cnts_scaled <- as.matrix(seurat@assays$RNA[markers, ordered_index]) %>%
t() %>%
scale() %>%
t()
if (!is.null(cap_value)) {
message(str_interp("Zscores > |${cap_value}| are set to ${cap_value} (or -${cap_value})"))
changed_values <- sum(cnts_scaled > cap_value) + sum(cnts_scaled < -cap_value)
cnts_scaled[cnts_scaled > cap_value] <- cap_value
cnts_scaled[cnts_scaled < -cap_value] <- -cap_value
message(str_interp("This was the case for ${changed_values} values"))
col_fun <- colorRamp2(c(-cap_value, 0, cap_value), c("blue", "white", "red"))
} else {
col_fun <- colorRamp2(
breaks = c(min(cnts_scaled, na.rm = T), mean(cnts_scaled, na.rm = T), max(cnts_scaled, na.rm = T)),
colors = c("blue", "white", "red")
)
}
p <- Heatmap(cnts_scaled,
cluster_rows = cluster_rows_,
cluster_columns = F,
show_row_names = T,
show_column_names = F,
column_split = c_split,
row_split = celltype,
show_row_dend = F,
name = "Z-score",
col = col_fun,
row_gap = unit(4, "mm"),
border = "black",
column_title_gp = grid::gpar(fontsize = 9, fontface = "bold"),
column_title_rot = 90,
row_names_gp = grid::gpar(fontsize = 10, fontface = "bold"),
use_raster = F,
heatmap_legend_param = list(at = c(-cap_value, 0, cap_value))
)
if (to_ggplot) {
p <- ggplotify::as.ggplot(p)
}
return(p)
}
# runs the "normal" seurat pipeline
run_seurat_steps <- function(seurat_object, include_leiden = F, include_norm = T, include_tsne = F, include_louvain = F) {
if (include_norm) {
print("Running normalization and variable feature extraction")
seurat_object <- seurat_object %>%
NormalizeData(., normalization.method = "LogNormalize", scale.factor = 10000) %>%
FindVariableFeatures(., selection.method = "vst", nfeatures = 3000)
}
print(seurat_object)
print("Running PCA and UMAP")
seurat_object <- seurat_object %>%
ScaleData(.) %>%
RunPCA(., npcs = ifelse(ncol(seurat_object) < 50, ncol(seurat_object) - 1, 50), verbose = F) %>%
RunUMAP(., reduction = "pca", dims = 1:20, verbose = F, n.neighbors = ifelse(ncol(seurat_object) < 30, ncol(seurat_object) - 1, 30))
if (include_tsne) {
print("Running Tsne")
seurat_object <- seurat_object %>%
RunTSNE(., reduction = "pca", dims = 1:20, verbose = F)
}
if (include_leiden) {
print("Running neighborhood detection")
seurat_object <- seurat_object %>%
FindNeighbors(., dims = 1:20, k.param = 10, verbose = F) %>%
FindClusters(.,
algorithm = 4,
resolution = c(
0.1, 0.3, 0.5,
0.6, 0.7
),
method = "igraph"
)
}
if (include_louvain) {
print("Running neighborhood detection")
seurat_object <- seurat_object %>%
FindNeighbors(., dims = 1:20, k.param = 10, verbose = F) %>%
FindClusters(.,
resolution = c(
0.1, 0.3, 0.5,
0.6, 0.7, 1, 1.3, 1.5
)
)
}
return(seurat_object)
}
run_integration_steps <- function(seurat_object) {
seurat_object_split <- SplitObject(DietSeurat(seurat_object, assays = "RNA"), split.by = "orig.ident")
seurat_object_split <- lapply(setNames(names(seurat_object_split), names(seurat_object_split)), function(x) {
print(x)
tmp <- seurat_object_split[[x]]
tmp <- run_seurat_steps(tmp)
})
features <- SelectIntegrationFeatures(object.list = seurat_object_split)
min_size <- min(sapply(seurat_object_split, ncol))
anchors <- FindIntegrationAnchors(
object.list = seurat_object_split,
anchor.features = features,
dims = 1:ifelse(min_size < 30, min_size - 1, 30),
k.score = ifelse(min_size < 30, min_size - 1, 30),
k.filter = ifelse(min_size < 200, 50, 200)
)
seurat_integrated <- IntegrateData(anchorset = anchors, dims = 1:ifelse(min_size < 20, min_size - 1, 20), k.weight = ifelse(min_size < 100, min_size - 1, 100))
DefaultAssay(seurat_integrated) <- "integrated"
seurat_integrated <- run_seurat_steps(seurat_integrated, include_norm = F, include_louvain = T, include_tsne = F)
return(seurat_integrated)
}
# size=0.05,
# shape=19,
# stroke=0.4
new_dimplot <- function(seurat, feature, dim_reduction = "umap", sort = F, ...) {
embedding_df <- Embeddings(seurat, dim_reduction)
data <- FetchData(seurat, feature)
feature_name <- colnames(data)[1]
if (sort) {
data <- data %>% arrange(!!sym(feature_name))
}
if (n_distinct(data[[feature_name]]) > 20) {
print("Assuming the feature of interest is numeric")
data[[feature_name]] <- as.numeric(data[[feature]])
}
data_ <<- data
data <- left_join(
data %>% data.frame() %>% rownames_to_column("tmp_id"),
embedding_df %>% data.frame() %>% rownames_to_column("tmp_id"),
by = "tmp_id"
)
embedding_colnames <- colnames(data)[(ncol(data) - 1):ncol(data)]
p <- ggplot(data, aes(!!sym(embedding_colnames[[1]]),
!!sym(embedding_colnames[[2]]),
color = !!sym(feature_name)
)) +
geom_point(...)
if (n_distinct(data[[feature_name]]) < 20) {
p <- p +
guides(color = guide_legend(override.aes = list(size = 1.3)))
}
return(p)
}