-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_mixed_effects_parcellation.py
170 lines (146 loc) · 6.36 KB
/
test_mixed_effects_parcellation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""Test the mixed_effects_parcellation module
Author: Bertrand Thirion, 2012
"""
import numpy as np
from numpy.testing import assert_almost_equal
from nose.tools import assert_true, assert_equal
from numpy.testing import assert_array_equal
from mixed_effects_parcel import (
log_likelihood, log_likelihood_,
cluster_spatial_data, score_spatial_model, manual_optimization,
cluster_selection, em_inference, em_inference_fast)
from data_simulation import (
generate_data, generate_spatial_data)
def u2J(u):
"""Small function to convert a labelling in a blockwise covariance"""
X = np.zeros((u.size, len(np.unique(u))))
X[np.arange(u.size), u] = 1
J = np.dot(X, X.T)
return J
def test_generate_data():
"""Test data generator"""
y, u = generate_data(mu=0, sigma1=1, n_subjects=1, n_voxels=30)
assert_true(y.shape == u.shape)
assert_true(y.var() < 2)
assert_true( y.var() > 1)
assert_true(y.mean() ** 2 < 1)
assert_array_equal(u, np.zeros(u.size))
def test_em_inference():
""" """
y, u = generate_data(mu=0, sigma1=1, sigma2=1, n_subjects=10, n_voxels=10)
mu, s1, s2, ll = em_inference(y, u)
assert_almost_equal(mu, 0, 0)
assert_almost_equal(s1, 1, 0)
assert_almost_equal(s2, 1, 0)
mu_, s1_, s2_, ll_ = em_inference_fast(y, u)
assert_almost_equal(mu, mu_, 6)
assert_almost_equal(s1, s1_, 6)
assert_almost_equal(s2, s2_, 6)
assert_almost_equal(ll, ll_, 6)
def test_likelihood():
"""Test that the returned likelihood is reasonable"""
mu, sigma1, sigma2, n_subjects, n_voxels= 5., 1., 0., 1, 30
y, u = generate_data(mu=mu, sigma1=sigma1, sigma2=sigma2,
n_subjects=n_subjects, n_voxels=n_voxels)
ll = log_likelihood(y, mu, sigma1, 0., np.eye(n_voxels)) / y.size
h = - 0.5 * (1 + np.log(2 * np.pi))
assert_almost_equal(ll, h, 0)
sigma1 = 10.
y, u = generate_data(mu=mu, sigma1=sigma1, sigma2=sigma2,
n_subjects=n_subjects, n_voxels=n_voxels)
ll = log_likelihood(y, mu, sigma1, 0., np.eye(n_voxels)) / y.size
assert_almost_equal(ll, h - np.log(sigma1), 0)
sigma1, sigma2, n_subjects, n_voxels = 0, 1, 30, 1
y, u = generate_data(mu=mu, sigma1=sigma1, sigma2=sigma2,
n_subjects=n_subjects, n_voxels=n_voxels)
ll = log_likelihood(y, mu, 0., sigma2, np.eye(n_subjects)) / y.size
assert_almost_equal(ll, h, 0)
def test_likelihood_u_J():
"""Test that the 2 likelihood estimators give the same result"""
# 3 different parameter settings to test numerical stability
# setting 1
mu, sigma1, sigma2, n_subjects, n_voxels= 5., 1., 10., 5, 10
y, u = generate_data(mu=mu, sigma1=sigma1, sigma2=sigma2,
n_subjects=n_subjects, n_voxels=n_voxels)
J = u2J(u)
ll1 = log_likelihood(y, mu, sigma1, sigma2, J)
ll2 = log_likelihood_(y, mu, sigma1, sigma2, u)
assert_almost_equal(ll1, ll2)
# setting2
mu, sigma1, sigma2, n_subjects, n_voxels= -5., 10., 1., 10, 5
y, u = generate_data(mu=mu, sigma1=sigma1, sigma2=sigma2,
n_subjects=n_subjects, n_voxels=n_voxels)
J = u2J(u)
ll1 = log_likelihood(y, mu, sigma1, sigma2, J)
ll2 = log_likelihood_(y, mu, sigma1, sigma2, u)
assert_almost_equal(ll1, ll2)
# setting 3
mu, sigma1, sigma2, n_subjects, n_voxels= -5., 1.e-6, 1, 10, 1
y, u = generate_data(mu=mu, sigma1=sigma1, sigma2=sigma2,
n_subjects=n_subjects, n_voxels=n_voxels)
J = u2J(u)
ll1 = log_likelihood(y, mu, sigma1, sigma2, J)
ll2 = log_likelihood_(y, mu, sigma1, sigma2, u)
assert_almost_equal(ll1, ll2, 3)
def test_generate_spatial_data():
shape = (40, 40)
xyz, label, X = generate_spatial_data(shape=shape)
assert_equal(xyz.shape, (np.prod(shape), 2))
assert_true(label.shape == np.prod(shape))
assert_true(X.shape == (np.prod(shape), 1))
k, mu = 5, 10.
xyz, label, X = generate_spatial_data(n_parcels=k, shape=shape)
assert_equal(len(np.unique(label)), k)
xyz, label, X = generate_spatial_data(n_parcels=5, mu=mu*np.ones(k))
assert_almost_equal(X.mean(), mu, -1)
def test_cluster_spatial():
# dot it based on the shape
shape, k = (20, 20), 5
xyz, _, X = generate_spatial_data(shape=shape)
u = cluster_spatial_data(X, n_parcels=k, xyz=xyz, shape=shape)
assert_true(len(np.unique(u)) == k)
# now dot it with a mask
mask = np.random.rand(*shape) > .1
xyz, _, X = generate_spatial_data(shape=shape, mask=mask)
u = cluster_spatial_data(X, n_parcels=k, xyz=xyz, shape=shape, mask=mask)
assert_true(len(np.unique(u)) == k)
# now do it with the coordinates
u = cluster_spatial_data(X, n_parcels=k, xyz=xyz)
assert_true(len(np.unique(u)) == k)
def test_score_model():
shape, k, n_subjects = (20, 20), 5, 4
xyz, _, X = generate_spatial_data(shape=shape, n_subjects=n_subjects)
u = cluster_spatial_data(X, n_parcels=k, xyz=xyz, shape=shape)
# using ll
ll = score_spatial_model(X, u, cv=None) / (n_subjects * np.prod(shape))
assert_almost_equal(ll, -0.5 * (1 + np.log(2 * np.pi)), 0)
# using loo
ll = score_spatial_model(X, u, cv='loo') / (n_subjects * np.prod(shape))
assert_almost_equal(ll, -0.5 * (1 + np.log(2 * np.pi)), 0)
# using kfold
ll = score_spatial_model(X, u, cv='kfold') / (n_subjects * np.prod(shape))
assert_almost_equal(ll, -0.5 * (1 + np.log(2 * np.pi)), 0)
def test_manual_opt():
n_subjects, n_voxels = 5, 20
mu, sigma1, sigma2 = 3., 10., 1.
y, u = generate_data(n_subjects=n_subjects, n_voxels=n_voxels, mu=mu,
sigma1=sigma1, sigma2=sigma2)
mu_, sigma1_, sigma2_, ll_ = manual_optimization(y, u)
assert_almost_equal(mu, mu_, 0)
assert_almost_equal(sigma1, sigma1_, 0)
assert_almost_equal(sigma2, sigma2_, 0)
def test_cluster_selection():
n_parcels, n_subjects = 2, 6
shape, verbose = (15, 10), False
mu = 10 * np.random.randn(n_parcels)
sigma2 = np.ones(n_parcels)
xyz, label, X = generate_spatial_data(
n_parcels=n_parcels, mu=mu, sigma2=sigma2, n_subjects=n_subjects,
shape=shape, seed=1)
krange = range(1, 4)
label, ll = cluster_selection(X, krange, shape=shape)
n_labels = len(np.unique(label))
assert_true(n_labels > 1)
if __name__ == '__main__':
import nose
nose.run(argv=['', __file__])