-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathType.hs
276 lines (204 loc) · 8.48 KB
/
Type.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
module Type where
import Data.List
import Data.Maybe(fromJust)
import Head
--------------------------
instance Functor TI where
fmap f (TI m) = TI (\e -> let (a, e') = m e in (f a, e'))
instance Applicative TI where
pure a = TI (\e -> (a, e))
TI fs <*> TI vs = TI (\e -> let (f, e') = fs e; (a, e'') = vs e' in (f a, e''))
instance Monad TI where
return x = TI (\e -> (x, e))
TI m >>= f = TI (\e -> let (a, e') = m e; TI fa = f a in fa e')
freshVar :: TI SimpleType
freshVar = TI (\e -> let v = "t"++show e in (TVar v, e+1))
runTI (TI m) = let (t, _) = m 0 in t
----------------------------
(/+/) :: [Assump] -> [Assump] -> [Assump]
a1 /+/ a2 = nubBy assumpEq (a2 ++ a1)
assumpEq (x:>:_) (u:>:_) = (x == u)
t --> t' = TArr t t'
infixr 4 @@
(@@) :: Subst -> Subst -> Subst
s1 @@ s2 = [ (u, apply s1 t) | (u,t) <- s2 ] ++ s1
infixr 5 ~~
(~~) :: SimpleType -> SimpleType -> Constraint
t1 ~~ t2 = Simp (TEq t1 t2)
----------------------------
class Subs t where
apply :: Subst -> t -> t
tv :: t -> [Id]
instance Subs SimpleType where
apply s (TVar u) =
case lookup u s of
Just t -> t
Nothing -> TVar u
apply s (TCon u) =
case lookup u s of
Just t -> t
Nothing -> TCon u
apply s (TArr l r) = TArr (apply s l) (apply s r)
apply s (TApp c v) = TApp (apply s c) (apply s v)
apply _ (TGen n) = TGen n
tv (TVar u) = [u]
tv (TArr l r) = tv l `union` tv r
tv (TApp c v) = tv c `union` tv v
tv (TCon _) = []
tv (TGen _) = []
instance Subs a => Subs [a] where
apply s = map (apply s)
tv = nub . concat . map tv
instance Subs Assump where
apply s (i:>:t) = i:>:apply s t
tv (_:>:t) = tv t
instance Subs Type where
apply s (Forall qt) = Forall (apply s qt)
tv (Forall qt) = tv qt
instance Subs SConstraint where
apply s (TEq a b) = TEq (apply s a) (apply s b)
apply s (SConj cs) = SConj (map (apply s) cs)
apply s (Unt as bs c) = (Unt as bs (apply s c))
apply s E = E
tv _ = []
instance Subs Constraint where
apply s (Simp c) = Simp (apply s c)
apply s (Conj cs) = Conj (map (apply s) cs)
apply s (Impl as bs c f) = (Impl as bs (apply s c) (apply s f))
tv _ = []
instance Subs ConstrainedType where
apply s (Constrained a t) = Constrained a (apply s t)
tv (Constrained _ t) = tv t
------------------------------------
varBind :: Id -> SimpleType -> Maybe Subst
varBind u t | t == TVar u = Just []
| t == TCon u = Just []
| u `elem` tv t = Nothing
| otherwise = Just [(u, t)]
mgu (TArr l r, TArr l' r') = do s1 <- mgu (l,l')
s2 <- mgu ((apply s1 r),(apply s1 r'))
return (s2 @@ s1)
mgu (TApp c v, TApp c' v') = do s1 <- mgu (c,c')
s2 <- mgu ((apply s1 v) , (apply s1 v'))
return (s2 @@ s1)
mgu (TVar u, t ) = varBind u t
mgu (t, TVar u ) = varBind u t
mgu (u, t ) = if u==t then Just [] else Nothing
unify t t' = case mgu (t,t') of
Nothing -> error ("unification: trying to unify\n" ++ show t ++ "\nand\n" ++ show t')
Just s -> s
tiContext :: [Assump] -> Id -> TI (SimpleType, SConstraint)
-- n-tuple on context
tiContext g ('(':is) = do t <- nTupleType is
r <- freshInstC t E
return (r)
-- numbers are marked with 0 and typed as Int
tiContext g ('0':is) = do a <- freshVar
return (a, TEq a (TCon "Int"))
tiContext g i = if l /= [] then (freshInst t c) else error ("Variable " ++ i ++ " undefined on context:" ++ show g ++ "\n")
where
l = dropWhile (\(i' :>: _) -> i /= i' ) g
(_ :>: Constrained t c) = head l
check _ (Nothing) = False
check us (Just []) = True
check us (Just ((a,_):ss)) = if a `elem` us then False else check us (Just ss)
appParametros i [] = i
appParametros (TArr _ i) (_:ts) = appParametros i ts
convert a = Constrained (Forall a) E
quantify vs qt = Constrained (Forall (apply s qt)) (E) where
vs' = [v | v <- tv qt, v `elem` vs]
s = zip vs' (map TGen [0..])
quantifyC vs qt cs = Constrained (Forall (apply s qt)) (apply s cs) where
vs' = [v | v <- tv qt, v `elem` vs]
s = zip vs' (map TGen [0..])
quantifyAll t = quantify (tv t) t
quantifyAllC t cs = quantifyC (tv t) t cs
quantifyAssump (i,t) = i:>:quantifyAll t
countTypes (TArr l r) = max (countTypes l) (countTypes r)
countTypes (TApp l r) = max (countTypes l) (countTypes r)
countTypes (TGen n) = n
countTypes _ = 0
freshInstance :: Type -> TI SimpleType
freshInstance (U t) = return t
freshInstance (Forall t) = do fs <- mapM (\_ -> freshVar) [0..(countTypes t)]
return (inst fs t)
freshSubst (Forall t) = do fs <- mapM (\_ -> freshVar) [0..(countTypes t)]
return (fs,t)
freshSubstC (Constrained (Forall t) _) = do fs <- mapM (\_ -> freshVar) [0..(countTypes t)]
return (fs,t)
freshs (ts) = do fs <- mapM (\_ -> freshVar) ts
return (mkPair ts fs)
freshInst t c = do (fs,t') <- freshSubst t
return (inst fs t', instC fs c)
freshInstC t c = do (fs,t') <- freshSubstC t
return (inst fs t', instC fs c)
inst fs (TArr l r) = TArr (inst fs l) (inst fs r)
inst fs (TApp l r) = TApp (inst fs l) (inst fs r)
inst fs (TGen n) = fs !! n
inst _ t = t
instC :: [SimpleType] -> SConstraint -> SConstraint
instC _ (E) = E
instC fs (TEq t t') = (TEq (inst fs t) (inst fs t'))
instC fs (Unt ts is cs) = (Unt (map (inst fs) ts) is (instC fs cs))
instC fs (SConj cs) = (SConj (map (instC fs) cs))
instF fs (Simp c) = (Simp (instC fs c))
instF fs (Impl ts is cs f) = (Impl (map (inst fs) ts) is (instC fs cs) (instF fs f))
instF fs (Conj cs) = (Conj (map (instF fs) cs))
simple (Simp c) = c
simple (Conj (c:cs)) = SConj ([simple c] ++ [simple (Conj cs)])
simple (Impl as bs E f) = Unt as bs (simple f)
simple _ = E
dom' (a, TVar b) = if a == b then "" else a
dom' (a,_) = a
dom a = (map dom' a)
toType a = U a
leftArr (TArr a (TArr b c)) = a --> leftArr (TArr b c)
leftArr (TArr a _) = a
rightArr (TArr a as) = rightArr as
rightArr (a) = a
cons (TCon i) = i
cons (TApp c _) = cons c
findAs (TCon i) = []
findAs (TApp c (TVar a)) = findAs c ++ [a]
findAs _ = []
findBs ps as = (tv ps) \\ as
makeTvar i = TVar i
idOf (TVar a) = a
mkPair [] _ = []
mkPair (a:as) (b:bs) = (a,b):mkPair as bs
nTupleType :: Id -> TI ConstrainedType
nTupleType i = do let n = length i
ts <- mapM (\_ -> freshVar) (take n [0..])
let r = (foldl1 TApp ([TCon ("(" ++ i)] ++ ts))
return (quantifyAll (foldr1 TArr (ts ++ [r])))
context = map quantifyAssump [("Just", TArr (TVar "a") (TApp (TCon "Maybe") (TVar "a"))),
("Nothing", TApp (TCon "Maybe") (TVar "a")),
("Left", TArr (TVar "a") (TApp (TApp (TCon "Either") (TVar "a")) (TVar "b"))),
("Right", TArr (TVar "a") (TApp (TApp (TCon "Either") (TVar "a")) (TVar "b"))),
("True", TCon "Bool"),
("False", TCon "Bool"),
("+", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Int"))),
("-", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Int"))),
("*", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Int"))),
("/", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Int"))),
("===", TArr (TVar "a") (TArr (TVar "a") (TCon "Bool"))),
("==", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Bool"))),
(">=", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Bool"))),
("<=", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Bool"))),
(">", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Bool"))),
("<", TArr (TCon "Int") (TArr (TCon "Int") (TCon "Bool"))),
("&&", TArr (TCon "Bool") (TArr (TCon "Bool") (TCon "Bool"))),
("||", TArr (TCon "Bool") (TArr (TCon "Bool") (TCon "Bool")))]
typeFromAssump (i:>:t) = t
clean (Conj cs) = Conj (clean' (Conj cs))
clean c = c
clean' (Conj []) = []
clean' (Conj cs) = foldr1 (++) (map clean' cs)
clean' (Impl as bs c f) = [Impl as bs (cleanS c) (clean f)]
clean' (Simp a) = if cls == E then [] else [Simp cls] where cls = (cleanS a)
cleanS c = if cls == [] then E else SConj cls where cls = (cleanS' c)
cleanS' (SConj []) = []
cleanS' (SConj cs) = foldr1 (++) (map cleanS' cs)
cleanS' (E) = []
cleanS' (Unt as bs c) = [Unt as bs (cleanS c)]
cleanS' c = [c]