-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_ramp.py
232 lines (198 loc) · 8.56 KB
/
test_ramp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from data_io import DataIO
import pandas as pd
import ramp as rp
from ramp.estimators.sk import BinaryProbabilities
import sklearn
from sklearn.naive_bayes import GaussianNB, MultinomialNB
import joblib
from os.path import join as path_join
import numpy as np
from itertools import islice
dio = DataIO("Settings_submission.json")
store = pd.HDFStore(dio.train_file, "r")
print store
training_data = store["train_train"]
writer = training_data.writer
#removes constant columns
non_constant_cols = (training_data.std() > 1e-9)
all_columns = non_constant_cols.index[non_constant_cols.values]
#all_columns = training_data.columns
learn = True
def get_columns_with_prefix(prefix):
"""Returns only column names that starts with prefix"""
return filter(lambda column: column.startswith(prefix), all_columns)
f1 = get_columns_with_prefix('DirectionPerpendicular5Hist10')
f2 = get_columns_with_prefix('CurvatureAli5Hist100')
f3 = get_columns_with_prefix('tortuosityDirectionHist10')
f4 = get_columns_with_prefix('chaincodeHist_8')
f5 = get_columns_with_prefix('chaincode8order2_64')
f6 = get_columns_with_prefix('chaincode8order3_512')
f7 = get_columns_with_prefix('chaincode8order4_4096')
f8 = get_columns_with_prefix('directions_hist1_4')
f9 = get_columns_with_prefix('directions_hist2_8')
f10 = get_columns_with_prefix('directions_hist3_12')
f11 = get_columns_with_prefix('directions_hist4_16')
f12 = get_columns_with_prefix('directions_hist5_20')
f13 = get_columns_with_prefix('directions_hist6_24')
f14 = get_columns_with_prefix('directions_hist7_28')
f15 = get_columns_with_prefix('directions_hist8_32')
f16 = get_columns_with_prefix('directions_hist9_36')
f17 = get_columns_with_prefix('directions_hist10_40')
f18 = get_columns_with_prefix('directions_hist1a2_12')
f19 = get_columns_with_prefix('directions_hist1a2a3_24')
f20 = get_columns_with_prefix('directions_hist1a2a3a4_40')
f21 = get_columns_with_prefix('directions_hist1a2a3a4a5_60')
f22 = get_columns_with_prefix('directions_hist1a2a3a4a5a6_84')
f23 = get_columns_with_prefix('directions_hist1a2a3a4a5a6a7_112')
f24 = get_columns_with_prefix('directions_hist1a2a3a4a5a6a7a8_144')
f25 = get_columns_with_prefix('directions_hist1a2a3a4a5a6a7a8a9_180')
f26 = get_columns_with_prefix('directions_hist1a2a3a4a5a6a7a8a9a10_220')
#sums how many columns are chosen with these features
print map(lambda i: len(eval('f%d' % i)), range(1, 27))
print sum(map(lambda i: len(eval('f%d' % i)), range(1, 27)))
#prints unused columns
#features = ['DirectionPerpendicular5Hist10', 'CurvatureAli5Hist100', 'tortuosityDirectionHist10', 'chaincodeHist_8', 'chaincode8order2_64', 'chaincode8order3_512', 'chaincode8order4_4096', 'directions_hist1_4', 'directions_hist2_8', 'directions_hist3_12', 'directions_hist4_16', 'directions_hist5_20', 'directions_hist6_24', 'directions_hist7_28', 'directions_hist8_32', 'directions_hist9_36', 'directions_hist10_40', 'directions_hist1a2_12', 'directions_hist1a2a3_24', 'directions_hist1a2a3a4_40', 'directions_hist1a2a3a4a5_60', 'directions_hist1a2a3a4a5a6_84', 'directions_hist1a2a3a4a5a6a7_112', 'directions_hist1a2a3a4a5a6a7a8_144', 'directions_hist1a2a3a4a5a6a7a8a9_180', 'directions_hist1a2a3a4a5a6a7a8a9a10_220']
#for column in all_columns:
#nex = False
#for feature in features:
#if column.startswith(feature):
#nex = True
#break
#if nex:
#continue
#print column
#a=5/0
print training_data
context = rp.DataContext(
store=dio.cache_dir,
data=training_data
)
base_config = rp.Configuration(
target=rp.AsFactor('male'),
metrics=[rp.metrics.LogLoss()],
)
#Writer language factor, same text factor
base_features = [
rp.Feature("writer"),
rp.AsFactor("language"),
rp.AsFactor("same_text")
#rp.FillMissing(f, 0) for f in training_data.columns[3:-1]
]
f6_features = [rp.FillMissing(f, 0) for f in f6]
f7_features = [rp.FillMissing(f, 0) for f in f7]
f26_features = [rp.FillMissing(f, 0) for f in f26]
all_f = [rp.FillMissing(f, 0) for f in all_columns[3:-1]]
f6_f7 = list(f6_features)
f6_features.extend(f7_features)
f6_f7_f26 = list(f6_f7)
f6_f7_f26.extend(f26_features)
factory = rp.ConfigFactory(
base_config,
features=[
#('BASE: writer, F_language, F_same text', base_features),
#('BASE + f6', f6_features),
#('BASE + f7', f7_features),
#('BASE + f26', f26_features),
('BASE + f6 + f7', f6_f7),
('BASE + f6 + f7 + f26', f6_f7_f26),
('BASE + all not only f', all_f),
#('BASE + f6 norm', [rp.Normalize(f) for f in f6_features]),
#('BASE + f7 norm', [rp.Normalize(f) for f in f7_features]),
#('BASE + f26 norm', [rp.Normalize(f) for f in f26_features]),
('BASE + f6 + f7 norm', [rp.Normalize(f) for f in f6_f7]),
('BASE + f6 + f7 + f26 norm', [rp.Normalize(f) for f in f6_f7_f26]),
('BASE + all not only f norm', [rp.Normalize(f) for f in all_f]),
#('all except subject top 100 with RF', [rp.trained.FeatureSelector(
#base_features,
##use random forest to trim features
#rp.selectors.RandomForestSelector(classifier=True),
#target=rp.AsFactor('activity'), # target to use
#n_keep=100,
#)]),
#('all except subject normalized top 100 with RF', [rp.trained.FeatureSelector(
#normalized_base_features,
##use random forest to trim features
#rp.selectors.RandomForestSelector(classifier=True),
#target=rp.AsFactor('activity'), # target to use
#n_keep=100,
#)]),
],
model=[
BinaryProbabilities(
sklearn.linear_model.LogisticRegression(random_state=42)),
BinaryProbabilities(
sklearn.linear_model.LogisticRegression(random_state=42, penalty='l1')),
BinaryProbabilities(
sklearn.linear_model.SGDClassifier(random_state=42, loss='log')),
BinaryProbabilities(
sklearn.linear_model.SGDClassifier(random_state=42, loss='modified_huber')),
BinaryProbabilities(
sklearn.ensemble.RandomForestClassifier(random_state=42, n_jobs=4, n_estimators=20)),
BinaryProbabilities(
sklearn.ensemble.ExtraTreesClassifier(random_state=42, n_jobs=4, n_estimators=20)),
BinaryProbabilities(
sklearn.ensemble.AdaBoostClassifier()),
BinaryProbabilities(
sklearn.ensemble.AdaBoostClassifier(n_estimators=100)),
]
)
def predict(config, context):
test = store["train_test"]
ctx = context.copy()
train_idx = ctx.data.index
ctx.data = ctx.data.append(test, ignore_index=True)
print ctx.data
ctx.train_index = train_idx
max_idx = max(train_idx)
test_idx = range(max_idx + 1, max(ctx.data.index)+1)
preds, predict_x, predict_y = rp.models.predict(
config,
ctx,
test_idx
)
actuals = predict_y.reindex(test_idx)
scores = []
print actuals[:10]
print preds[:10]
score = metric.score(actuals, preds)
print "%0.4f" % score
return preds, train.writer
if learn:
#my_cv = sklearn.cross_validation.LeaveOneLabelOut(writer)
#my_cv = list(islice(sklearn.cross_validation.LeavePLabelOut(writer, p=45), 5)) # 5 splits
my_cv = list(islice(sklearn.cross_validation.LeavePLabelOut(writer, p=75), 3)) # 3 splits
all_scores = []
#myStore = rp.store.PickleStore(path=dio.cache_dir)
for config in factory:
#print
#print "S", str(config)
#ctx = context.copy()
#for train, test in my_cv:
#ctx.train_index = train
#key = rp.models.get_key(config, ctx)
#safe_name = myStore.safe_name(key)
#print "\tKE:", ctx.create_key()
#print key
#print "\tSN:",safe_name
#ven = myStore.load(key)
#print "\t",str(ven)
scores = rp.models.cv(config, context, folds=my_cv, repeat=2,
print_results=True)
all_scores.append((config, scores))
joblib.dump(all_scores, path_join(dio.cache_dir, "all_scores_all"))
#break
joblib.dump(all_scores, path_join(dio.cache_dir, "all_scores_all"))
else:
configs = joblib.load(path_join(dio.cache_dir, "all_scores_all_vse"))
#config_id = 84
config_id = 90
config_log = configs[config_id][0]
print str(config_log)
preds, writers = predict(config_log, context)
print preds
##map(lambda conf, scores: print "\n", str(conf); rp.models.print_scores(scores), all_scores)
#joblib.dump(all_scores, path_join(dio.cache_dir, "all_scores_RF1"))
#print "scores"
#for config, scores in all_scores:
#print "\n", config
#rp.models.print_scores(scores)