-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSieve.hs
116 lines (100 loc) · 3.67 KB
/
Sieve.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
-- https://codeforces.com/blog/entry/54090
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE PartialTypeSignatures #-}
module Sieve where
import Control.Monad (forM_, unless)
import Control.Monad.ST
import Data.Array.ST
import Data.Array.Unboxed
import Data.STRef
newSTUArray :: (MArray (STUArray s) e (ST s), Ix i) => (i, i) -> e -> ST s (STUArray s i e)
newSTUArray = newArray
-- | Basic version. Suppose we want to compute a multiplicative function f such that
-- - f(p) = g(p) for prime p
-- - f(ip) = h(i, p, f(i)) when p divides i
-- Then @sieve n g h@ returns an array f on (1,n) such that f!i = f(i), in O(n) time.
sieve :: Int -> (Int -> Int) -> (Int -> Int -> Int -> Int) -> UArray Int Int
sieve n g h = runSTUArray $ do
primes <- newArray (0, n) (0 :: Int)
numPrimes <- newSTRef 0
composite <- newSTUArray (0, n) False
f <- newArray (1, n) 1
forM_ [2 .. n] $ \i -> do
isComp <- readArray composite i
unless isComp $ do
appendPrime primes numPrimes i
writeArray f i (g i)
np <- readSTRef numPrimes
let markComposites j
| j >= np = return ()
| otherwise = do
p <- readArray primes j
let ip = i * p
case ip > n of
True -> return ()
False -> do
writeArray composite ip True
fi <- readArray f i
case i `mod` p of
0 -> writeArray f ip (h i p fi)
_ -> do
writeArray f ip (fi * g p)
markComposites (j + 1)
markComposites 0
return f
appendPrime :: STUArray s Int Int -> STRef s Int -> Int -> ST s ()
appendPrime primes numPrimes p = do
n <- readSTRef numPrimes
writeArray primes n p
writeSTRef numPrimes $! n + 1
-- | More general version. Suppose we want to compute a
-- multiplicative function f such that f(p^k) = g p k. Then
-- @genSieve n g@ returns an array f on (1,n) such that f!i = f(i),
-- in O(n) time (but with a slightly higher constant factor than
-- 'sieve').
genSieve :: Int -> (Int -> Int -> Int) -> UArray Int Int
genSieve n g = runSTUArray $ do
primes <- newArray (0, n) (0 :: Int)
numPrimes <- newSTRef 0
composite <- newSTUArray (0, n) False
count <- newSTUArray (2, n) (0 :: Int)
f <- newArray (1, n) 1
forM_ [2 .. n] $ \i -> do
isComp <- readArray composite i
unless isComp $ do
appendPrime primes numPrimes i
writeArray f i (g i 1)
writeArray count i 1
np <- readSTRef numPrimes
let markComposites j
| j >= np = return ()
| otherwise = do
p <- readArray primes j
let ip = i * p
case ip > n of
True -> return ()
False -> do
writeArray composite ip True
fi <- readArray f i
case i `mod` p of
0 -> do
c <- readArray count i
f' <- readArray f (i `div` (p ^ c))
writeArray f ip (f' * g p (c + 1))
writeArray count ip (c + 1)
_ -> do
writeArray f ip (fi * g p 1)
writeArray count ip 1
markComposites (j + 1)
markComposites 0
return f
-- Some examples!
-- Euler's phi (totient) function
phi :: Int -> UArray Int Int
phi n = sieve n (subtract 1) (\_ p fi -> fi * p)
-- Divisor sigma function, σₐ(x) = Σ{d | x} dᵃ
divisorSigma :: Int -> Int -> UArray Int Int
divisorSigma n a = genSieve n (\p k -> (p ^ (a * (k + 1)) - 1) `div` (p ^ a - 1))
-- Möbius function (μ)
mu :: Int -> UArray Int Int
mu n = sieve n (const (-1)) (\_ _ _ -> 0)