Skip to content

Latest commit

 

History

History
142 lines (113 loc) · 5.15 KB

README.md

File metadata and controls

142 lines (113 loc) · 5.15 KB

Handwriting Generation

pdm-managed

Requirements

    Python>=3.8,
    gradio>=4.3.0,
    torch>=2.1.1,
    torchvision>=0.16.1,
    torchaudio>=2.1.1,
    lightning[extra]>=2.1.1,
    torchmetrics>=1.2.0,
    einops>=0.7.0,
    neptune>=1.8.3,
    dataclass-wizard>=0.22.2,
    setuptools>=68.2.2,
    h5py>=3.10.0,
    diffusers[torch]>=0.23.0,
    potracer>=0.0.4,
    clean-fid>=0.1.35

Datasets & Pre-processing

Download the IAM Dataset and IAM Online Dataset from https://fki.tic.heia-fr.ch/databases/iam-handwriting-database and https://fki.tic.heia-fr.ch/databases/iam-on-line-handwriting-database, respectively. Place them in the raw_data/IAMDB and raw_data/IAMonDB folders, respectively.

Then, to preprocess the dataset and save it to an H5 file, simply run the following command:

python3 prepare_data.py -c {RNN,Diffusion,LatentDiffusion}

Training from scratch

To train a diffusion model, run the following command:

python3 train.py -c Diffusion

Generate handwriting

To generate handwriting run the following command:

python3 synthesize.py -c LatentDiffusion -t "the quick brown fox jumps" -w 64

Full sampling

WIP

Commands

prepare_data.py

prepare_data.py [-h] -c {RNN,Diffusion,LatentDiffusion} [-cf CONFIG_FILE]

options:
  -h, --help            show this help message and exit
  -c {RNN,Diffusion,LatentDiffusion}, --config {RNN,Diffusion,LatentDiffusion}
                        Type of model
  -cf CONFIG_FILE, --config-file CONFIG_FILE
                        Filename for configs

train.py

train.py [-h] -c {RNN,Diffusion,LatentDiffusion} [-cf CONFIG_FILE] [-r] [-n]

options:
  -h, --help            show this help message and exit
  -c {RNN,Diffusion,LatentDiffusion}, --config {RNN,Diffusion,LatentDiffusion}
                        Type of model
  -cf CONFIG_FILE, --config-file CONFIG_FILE
                        Filename for configs
  -r, --remote          Flag indicating whether the model will be trained on a server with dedicated
                        GPUs, such as the A100
  -n, --neptune         Flag for using NeptuneLogger

synthesize.py

synthesize.py [-h] -c {RNN,Diffusion,LatentDiffusion} [-cf CONFIG_FILE] [-t TEXT] [-w WRITER]
                     [--color COLOR] [-s STYLE_PATH]

options:
  -h, --help            show this help message and exit
  -c {RNN,Diffusion,LatentDiffusion}, --config {RNN,Diffusion,LatentDiffusion}
                        Type of model
  -cf CONFIG_FILE, --config-file CONFIG_FILE
                        Filename for configs
  -t TEXT, --text TEXT  Text to generate
  -w WRITER, --writer WRITER
                        Writer style. If not provided, the default writer is selected randomly
  --color COLOR         Handwriting color. If not provided, the default color is black
  -s STYLE_PATH, --style_path STYLE_PATH
                        Filename for style. If not provided, the default style is selected randomly

full_sample.py

full_sample.py [-h] -c {Diffusion,LatentDiffusion} [-cf CONFIG_FILE] [--strict]

options:
  -h, --help            show this help message and exit
  -c {RNN,Diffusion,LatentDiffusion}, --config {RNN,Diffusion,LatentDiffusion}
                        Type of model
  -cf CONFIG_FILE, --config-file CONFIG_FILE
                        Filename for configs
  --strict              Strict mode for a dataset that excludes OOV words

References

  1. labml.ai Annotated PyTorch Paper Implementations
  2. WordStylist: Styled Verbatim Handwritten Text Generation with Latent Diffusion Models
  3. Diffusion models for Handwriting Generation
  4. Generating Sequences With Recurrent Neural Networks
  5. High-Resolution Image Synthesis with Latent Diffusion Models (A.K.A. LDM & Stable Diffusion)
  6. Attention Is All You Need
  7. Deep Residual Learning for Image Recognition
  8. GLU Variants Improve Transformer
  9. IAM Handwriting Database & IAM On-Line Handwriting Database
  10. U-Net: Convolutional Networks for Biomedical Image Segmentation
  11. Compvis/stable-diffusion · hugging face
  12. Semi-Parametric Neural Image Synthesis
  13. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network
  14. Diffusion Models: A Comprehensive Survey of Methods and Applications
  15. Denoising Diffusion Probabilistic Models
  16. Spatial Transformer Networks
  17. Decoupled Weight Decay Regularization
  18. MobileNetV2: Inverted Residuals and Linear Bottlenecks