-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
849 lines (767 loc) · 29.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gc
import toml
import gradio as gr
import numpy as np
import utils
import torch
import json
import PIL.Image
import base64
import safetensors
from io import BytesIO
from typing import Tuple
from datetime import datetime
from PIL import PngImagePlugin
import gradio_user_history as gr_user_history
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
from lora_diffusers import LoRANetwork, create_network_from_weights
from diffusers.models import AutoencoderKL
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler,
)
DESCRIPTION = "Animagine XL 3.0"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
MODEL = os.getenv("MODEL", "https://huggingface.co/Linaqruf/animagine-xl-3.0/blob/main/animagine-xl-3.0.safetensors")
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipeline = StableDiffusionXLPipeline.from_single_file if MODEL.endswith(".safetensors") else StableDiffusionXLPipeline.from_pretrained
pipe = pipeline(
MODEL,
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
use_auth_token=HF_TOKEN,
variant="fp16",
)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
else:
pipe = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def get_image_path(base_path: str):
extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif"]
for ext in extensions:
image_path = base_path + ext
if os.path.exists(image_path):
return image_path
return None
def update_selection(selected_state: gr.SelectData):
lora_repo = sdxl_loras[selected_state.index]["repo"]
lora_weight = sdxl_loras[selected_state.index]["multiplier"]
updated_selected_info = f"{lora_repo}"
return (
updated_selected_info,
selected_state,
lora_weight,
)
def parse_aspect_ratio(aspect_ratio):
if aspect_ratio == "Custom":
return None, None
width, height = aspect_ratio.split(" x ")
return int(width), int(height)
def aspect_ratio_handler(aspect_ratio, custom_width, custom_height):
if aspect_ratio == "Custom":
return custom_width, custom_height
else:
width, height = parse_aspect_ratio(aspect_ratio)
return width, height
def create_network(text_encoders, unet, state_dict, multiplier, device):
network = create_network_from_weights(
text_encoders,
unet,
state_dict,
multiplier,
)
network.load_state_dict(state_dict)
network.to(device, dtype=unet.dtype)
network.apply_to(multiplier=multiplier)
return network
def get_scheduler(scheduler_config, name):
scheduler_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
scheduler_config
),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_map.get(name, lambda: None)()
def free_memory():
torch.cuda.empty_cache()
gc.collect()
def preprocess_prompt(
style_dict,
style_name: str,
positive: str,
negative: str = "",
add_style: bool = True,
) -> Tuple[str, str]:
p, n = style_dict.get(style_name, style_dict["(None)"])
if add_style and positive.strip():
formatted_positive = p.format(prompt=positive)
else:
formatted_positive = positive
combined_negative = n + negative
return formatted_positive, combined_negative
def common_upscale(samples, width, height, upscale_method):
return torch.nn.functional.interpolate(
samples, size=(height, width), mode=upscale_method
)
def upscale(samples, upscale_method, scale_by):
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = common_upscale(samples, width, height, upscale_method)
return s
def load_and_convert_thumbnail(model_path: str):
with safetensors.safe_open(model_path, framework="pt") as f:
metadata = f.metadata()
if "modelspec.thumbnail" in metadata:
base64_data = metadata["modelspec.thumbnail"]
prefix, encoded = base64_data.split(",", 1)
image_data = base64.b64decode(encoded)
image = PIL.Image.open(BytesIO(image_data))
return image
return None
def load_wildcard_files(wildcard_dir):
wildcard_files = {}
for file in os.listdir(wildcard_dir):
if file.endswith(".txt"):
key = f"__{file.split('.')[0]}__" # Create a key like __character__
wildcard_files[key] = os.path.join(wildcard_dir, file)
return wildcard_files
def get_random_line_from_file(file_path):
with open(file_path, 'r') as file:
lines = file.readlines()
if not lines:
return ""
return random.choice(lines).strip()
def add_wildcard(prompt, wildcard_files):
for key, file_path in wildcard_files.items():
if key in prompt:
wildcard_line = get_random_line_from_file(file_path)
prompt = prompt.replace(key, wildcard_line)
return prompt
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 7.0,
num_inference_steps: int = 28,
use_lora: bool = False,
lora_weight: float = 1.0,
selected_state: str = "",
sampler: str = "Euler a",
aspect_ratio_selector: str = "896 x 1152",
style_selector: str = "(None)",
quality_selector: str = "Standard",
use_upscaler: bool = False,
upscaler_strength: float = 0.5,
upscale_by: float = 1.5,
add_quality_tags: bool = True,
profile: gr.OAuthProfile | None = None,
progress=gr.Progress(track_tqdm=True),
) -> PIL.Image.Image:
generator = seed_everything(seed)
network = None
network_state = {"current_lora": None, "multiplier": None}
width, height = aspect_ratio_handler(
aspect_ratio_selector,
custom_width,
custom_height,
)
prompt = add_wildcard(prompt, wildcard_files)
prompt, negative_prompt = preprocess_prompt(
quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags
)
prompt, negative_prompt = preprocess_prompt(
styles, style_selector, prompt, negative_prompt
)
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
if use_lora:
if not selected_state:
raise Exception("You must Select a LoRA")
repo_name = sdxl_loras[selected_state.index]["repo"]
full_path_lora = saved_names[selected_state.index]
weight_name = sdxl_loras[selected_state.index]["weights"]
lora_sd = load_file(full_path_lora)
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
if network_state["current_lora"] != repo_name:
network = create_network(
text_encoders,
pipe.unet,
lora_sd,
lora_weight,
device,
)
network_state["current_lora"] = repo_name
network_state["multiplier"] = lora_weight
elif network_state["multiplier"] != lora_weight:
network = create_network(
text_encoders,
pipe.unet,
lora_sd,
lora_weight,
device,
)
network_state["multiplier"] = lora_weight
else:
if network:
network.unapply_to()
network = None
network_state = {
"current_lora": None,
"multiplier": None,
}
backup_scheduler = pipe.scheduler
pipe.scheduler = get_scheduler(pipe.scheduler.config, sampler)
if use_upscaler:
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"seed": seed,
"sampler": sampler,
"sdxl_style": style_selector,
"add_quality_tags": add_quality_tags,
"quality_tags": quality_selector,
}
if use_lora:
metadata["use_lora"] = {"selected_lora": repo_name, "multiplier": lora_weight}
else:
metadata["use_lora"] = None
if use_upscaler:
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
metadata["use_upscaler"] = {
"upscale_method": "nearest-exact",
"upscaler_strength": upscaler_strength,
"upscale_by": upscale_by,
"new_resolution": f"{new_width} x {new_height}",
}
else:
metadata["use_upscaler"] = None
print(json.dumps(metadata, indent=4))
try:
if use_upscaler:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
).images
upscaled_latents = upscale(latents, "nearest-exact", upscale_by)
image = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=upscaler_strength,
generator=generator,
output_type="pil",
).images[0]
else:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images[0]
if network:
network.unapply_to()
network = None
if profile is not None:
gr_user_history.save_image(
label=prompt,
image=image,
profile=profile,
metadata=metadata,
)
if image and IS_COLAB:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
output_directory = "./outputs"
os.makedirs(output_directory, exist_ok=True)
filename = f"image_{current_time}.png"
filepath = os.path.join(output_directory, filename)
# Convert metadata to a string and save as a text chunk in the PNG
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("metadata", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
print(f"Image saved as {filepath} with metadata")
return image, metadata
except Exception as e:
print(f"An error occurred: {e}")
raise
finally:
if network:
network.unapply_to()
network = None
if use_lora:
del lora_sd, text_encoders
if use_upscaler:
del upscaler_pipe
pipe.scheduler = backup_scheduler
free_memory()
examples = [
"1girl, arima kana, oshi no ko, solo, idol, idol clothes, one eye closed, red shirt, black skirt, black headwear, gloves, stage light, singing, open mouth, crowd, smile, pointing at viewer",
"1girl, c.c., code geass, white shirt, long sleeves, turtleneck, sitting, looking at viewer, eating, pizza, plate, fork, knife, table, chair, table, restaurant, cinematic angle, cinematic lighting",
"1girl, sakurauchi riko, \(love live\), queen hat, noble coat, red coat, noble shirt, sitting, crossed legs, gentle smile, parted lips, throne, cinematic angle",
"1girl, amiya \(arknights\), arknights, dirty face, outstretched hand, close-up, cinematic angle, foreshortening, dark, dark background",
"A boy and a girl, Emiya Shirou and Artoria Pendragon from fate series, having their breakfast in the dining room. Emiya Shirou wears white t-shirt and jacket. Artoria Pendragon wears white dress with blue neck ribbon. Rice, soup, and minced meats are served on the table. They look at each other while smiling happily",
]
quality_prompt_list = [
{
"name": "(None)",
"prompt": "{prompt}",
"negative_prompt": "nsfw, lowres, ",
},
{
"name": "Standard",
"prompt": "{prompt}, masterpiece, best quality",
"negative_prompt": "nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, ",
},
{
"name": "Light",
"prompt": "{prompt}, (masterpiece), best quality, perfect face",
"negative_prompt": "nsfw, (low quality, worst quality:1.2), 3d, watermark, signature, ugly, poorly drawn, ",
},
{
"name": "Heavy",
"prompt": "{prompt}, (masterpiece), (best quality), (ultra-detailed), illustration, disheveled hair, perfect composition, moist skin, intricate details, earrings",
"negative_prompt": "nsfw, longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, ",
},
]
sampler_list = [
"DPM++ 2M Karras",
"DPM++ SDE Karras",
"DPM++ 2M SDE Karras",
"Euler",
"Euler a",
"DDIM",
]
aspect_ratios = [
"1024 x 1024",
"1152 x 896",
"896 x 1152",
"1216 x 832",
"832 x 1216",
"1344 x 768",
"768 x 1344",
"1536 x 640",
"640 x 1536",
"Custom",
]
style_list = [
{
"name": "(None)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "{prompt}, cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "nsfw, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "{prompt}, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "nsfw, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "{prompt}, anime artwork, anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "nsfw, photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "{prompt}, manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "nsfw, ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "{prompt}, concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "nsfw, photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "{prompt}, pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "nsfw, sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "{prompt}, ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "nsfw, photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "{prompt}, neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "nsfw, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "{prompt}, professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "nsfw, ugly, deformed, noisy, low poly, blurry, painting",
},
]
thumbnail_cache = {}
with open("lora.toml", "r") as file:
data = toml.load(file)
sdxl_loras = []
saved_names = []
for item in data["data"]:
model_path = hf_hub_download(item["repo"], item["weights"], token=HF_TOKEN)
saved_names.append(model_path) # Store the path in saved_names
if model_path not in thumbnail_cache:
thumbnail_image = load_and_convert_thumbnail(model_path)
thumbnail_cache[model_path] = thumbnail_image
else:
thumbnail_image = thumbnail_cache[model_path]
sdxl_loras.append(
{
"image": thumbnail_image, # Storing the PIL image object
"title": item["title"],
"repo": item["repo"],
"weights": item["weights"],
"multiplier": item.get("multiplier", "1.0"),
}
)
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
quality_prompt = {
k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list
}
# saved_names = [
# hf_hub_download(item["repo"], item["weights"], token=HF_TOKEN)
# for item in sdxl_loras
# ]
wildcard_files = load_wildcard_files("wildcard")
with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
title = gr.HTML(
f"""<h1><span>{DESCRIPTION}</span></h1>""",
elem_id="title",
)
gr.Markdown(
f"""Gradio demo for [cagliostrolab/animagine-xl-3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0)""",
elem_id="subtitle",
)
gr.Markdown(
f"""Prompting is a bit different in this iteration, we train the model like this:
```
1girl/1boy, character name, from what series, everything else in any order.
```
Prompting Tips
```
1. Quality Tags: `masterpiece, best quality, high quality, normal quality, worst quality, low quality`
2. Year Tags: `oldest, early, mid, late, newest`
3. Rating tags: `rating: general, rating: sensitive, rating: questionable, rating: explicit, nsfw`
4. Escape character: `character name \(series\)`
5. Recommended settings: `Euler a, cfg 5-7, 25-28 steps`
6. It's recommended to use the exact danbooru tags for more accurate result
7. To use character wildcard, add this syntax to the prompt `__character__`.
```
""",
elem_id="subtitle",
)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
selected_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
with gr.Tab("Txt2img"):
with gr.Group():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Enter your prompt",
)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Enter a negative prompt",
)
with gr.Accordion(label="Quality Tags", open=True):
add_quality_tags = gr.Checkbox(label="Add Quality Tags", value=True)
quality_selector = gr.Dropdown(
label="Quality Tags Presets",
interactive=True,
choices=list(quality_prompt.keys()),
value="Standard",
)
with gr.Row():
use_lora = gr.Checkbox(label="Use LoRA", value=False)
with gr.Group(visible=False) as lora_group:
selector_info = gr.Text(
label="Selected LoRA",
max_lines=1,
value="No LoRA selected.",
)
lora_selection = gr.Gallery(
value=[(item["image"], item["title"]) for item in sdxl_loras],
label="Animagine XL 2.0 LoRA",
show_label=False,
columns=2,
show_share_button=False,
)
lora_weight = gr.Slider(
label="Multiplier",
minimum=-2,
maximum=2,
step=0.05,
value=1,
)
with gr.Tab("Advanced Settings"):
with gr.Group():
style_selector = gr.Radio(
label="Style Preset",
container=True,
interactive=True,
choices=list(styles.keys()),
value="(None)",
)
with gr.Group():
aspect_ratio_selector = gr.Radio(
label="Aspect Ratio",
choices=aspect_ratios,
value="896 x 1152",
container=True,
)
with gr.Group():
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
with gr.Row() as upscaler_row:
upscaler_strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
visible=False,
)
upscale_by = gr.Slider(
label="Upscale by",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
visible=False,
)
with gr.Group(visible=False) as custom_resolution:
with gr.Row():
custom_width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
custom_height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
)
with gr.Group():
sampler = gr.Dropdown(
label="Sampler",
choices=sampler_list,
interactive=True,
value="Euler a",
)
with gr.Group():
seed = gr.Slider(
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Tab("Past Generation"):
gr_user_history.render()
with gr.Column(scale=3):
with gr.Blocks():
run_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion(label="Generation Parameters", open=False):
gr_metadata = gr.JSON(label="Metadata", show_label=False)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, gr_metadata],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
lora_selection.select(
update_selection,
outputs=[
selector_info,
selected_state,
lora_weight,
],
queue=False,
show_progress=False,
)
use_lora.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora,
outputs=lora_group,
queue=False,
api_name=False,
)
use_upscaler.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_upscaler,
outputs=[upscaler_strength, upscale_by],
queue=False,
api_name=False,
)
aspect_ratio_selector.change(
fn=lambda x: gr.update(visible=x == "Custom"),
inputs=aspect_ratio_selector,
outputs=custom_resolution,
queue=False,
api_name=False,
)
inputs = [
prompt,
negative_prompt,
seed,
custom_width,
custom_height,
guidance_scale,
num_inference_steps,
use_lora,
lora_weight,
selected_state,
sampler,
aspect_ratio_selector,
style_selector,
quality_selector,
use_upscaler,
upscaler_strength,
upscale_by,
add_quality_tags
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=[result, gr_metadata],
api_name=False,
)
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)