forked from kohya-ss/sd-scripts
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_textual_inversion_XTI.py
696 lines (582 loc) · 29 KB
/
train_textual_inversion_XTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import importlib
import argparse
import gc
import math
import os
import toml
from multiprocessing import Value
from tqdm import tqdm
import torch
from library.ipex_interop import init_ipex
init_ipex()
from accelerate.utils import set_seed
import diffusers
from diffusers import DDPMScheduler
import library
import library.train_util as train_util
import library.huggingface_util as huggingface_util
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
apply_snr_weight,
prepare_scheduler_for_custom_training,
pyramid_noise_like,
apply_noise_offset,
scale_v_prediction_loss_like_noise_prediction,
apply_debiased_estimation,
)
import library.original_unet as original_unet
from XTI_hijack import unet_forward_XTI, downblock_forward_XTI, upblock_forward_XTI
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
def train(args):
if args.output_name is None:
args.output_name = args.token_string
use_template = args.use_object_template or args.use_style_template
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, True)
if args.sample_every_n_steps is not None or args.sample_every_n_epochs is not None:
print(
"sample_every_n_steps and sample_every_n_epochs are not supported in this script currently / sample_every_n_stepsとsample_every_n_epochsは現在このスクリプトではサポートされていません"
)
assert (
args.dataset_class is None
), "dataset_class is not supported in this script currently / dataset_classは現在このスクリプトではサポートされていません"
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed)
tokenizer = train_util.load_tokenizer(args)
# acceleratorを準備する
print("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator)
# Convert the init_word to token_id
if args.init_word is not None:
init_token_ids = tokenizer.encode(args.init_word, add_special_tokens=False)
if len(init_token_ids) > 1 and len(init_token_ids) != args.num_vectors_per_token:
print(
f"token length for init words is not same to num_vectors_per_token, init words is repeated or truncated / 初期化単語のトークン長がnum_vectors_per_tokenと合わないため、繰り返しまたは切り捨てが発生します: length {len(init_token_ids)}"
)
else:
init_token_ids = None
# add new word to tokenizer, count is num_vectors_per_token
token_strings = [args.token_string] + [f"{args.token_string}{i+1}" for i in range(args.num_vectors_per_token - 1)]
num_added_tokens = tokenizer.add_tokens(token_strings)
assert (
num_added_tokens == args.num_vectors_per_token
), f"tokenizer has same word to token string. please use another one / 指定したargs.token_stringは既に存在します。別の単語を使ってください: {args.token_string}"
token_ids = tokenizer.convert_tokens_to_ids(token_strings)
print(f"tokens are added: {token_ids}")
assert min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1, f"token ids is not ordered"
assert len(tokenizer) - 1 == token_ids[-1], f"token ids is not end of tokenize: {len(tokenizer)}"
token_strings_XTI = []
XTI_layers = [
"IN01",
"IN02",
"IN04",
"IN05",
"IN07",
"IN08",
"MID",
"OUT03",
"OUT04",
"OUT05",
"OUT06",
"OUT07",
"OUT08",
"OUT09",
"OUT10",
"OUT11",
]
for layer_name in XTI_layers:
token_strings_XTI += [f"{t}_{layer_name}" for t in token_strings]
tokenizer.add_tokens(token_strings_XTI)
token_ids_XTI = tokenizer.convert_tokens_to_ids(token_strings_XTI)
print(f"tokens are added (XTI): {token_ids_XTI}")
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
if init_token_ids is not None:
for i, token_id in enumerate(token_ids_XTI):
token_embeds[token_id] = token_embeds[init_token_ids[(i // 16) % len(init_token_ids)]]
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
# load weights
if args.weights is not None:
embeddings = load_weights(args.weights)
assert len(token_ids) == len(
embeddings
), f"num_vectors_per_token is mismatch for weights / 指定した重みとnum_vectors_per_tokenの値が異なります: {len(embeddings)}"
# print(token_ids, embeddings.size())
for token_id, embedding in zip(token_ids_XTI, embeddings):
token_embeds[token_id] = embedding
# print(token_id, token_embeds[token_id].mean(), token_embeds[token_id].min())
print(f"weighs loaded")
print(f"create embeddings for {args.num_vectors_per_token} tokens, for {args.token_string}")
# データセットを準備する
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, False))
if args.dataset_config is not None:
print(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
print(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
use_dreambooth_method = args.in_json is None
if use_dreambooth_method:
print("Use DreamBooth method.")
user_config = {
"datasets": [
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
]
}
else:
print("Train with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
train_dataset_group.enable_XTI(XTI_layers, token_strings=token_strings)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
# make captions: tokenstring tokenstring1 tokenstring2 ...tokenstringn という文字列に書き換える超乱暴な実装
if use_template:
print(f"use template for training captions. is object: {args.use_object_template}")
templates = imagenet_templates_small if args.use_object_template else imagenet_style_templates_small
replace_to = " ".join(token_strings)
captions = []
for tmpl in templates:
captions.append(tmpl.format(replace_to))
train_dataset_group.add_replacement("", captions)
if args.num_vectors_per_token > 1:
prompt_replacement = (args.token_string, replace_to)
else:
prompt_replacement = None
else:
if args.num_vectors_per_token > 1:
replace_to = " ".join(token_strings)
train_dataset_group.add_replacement(args.token_string, replace_to)
prompt_replacement = (args.token_string, replace_to)
else:
prompt_replacement = None
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group, show_input_ids=True)
return
if len(train_dataset_group) == 0:
print("No data found. Please verify arguments / 画像がありません。引数指定を確認してください")
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
original_unet.UNet2DConditionModel.forward = unet_forward_XTI
original_unet.CrossAttnDownBlock2D.forward = downblock_forward_XTI
original_unet.CrossAttnUpBlock2D.forward = upblock_forward_XTI
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
accelerator.wait_for_everyone()
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
trainable_params = text_encoder.get_input_embeddings().parameters()
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数:0はメインプロセスになる
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
# lr schedulerを用意する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# acceleratorがなんかよろしくやってくれるらしい
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, lr_scheduler
)
index_no_updates = torch.arange(len(tokenizer)) < token_ids_XTI[0]
# print(len(index_no_updates), torch.sum(index_no_updates))
orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.detach().clone()
# Freeze all parameters except for the token embeddings in text encoder
text_encoder.requires_grad_(True)
text_encoder.text_model.encoder.requires_grad_(False)
text_encoder.text_model.final_layer_norm.requires_grad_(False)
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
# text_encoder.text_model.embeddings.token_embedding.requires_grad_(True)
unet.requires_grad_(False)
unet.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing: # according to TI example in Diffusers, train is required
unet.train()
else:
unet.eval()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
text_encoder.to(weight_dtype)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
if args.zero_terminal_snr:
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
if accelerator.is_main_process:
init_kwargs = {}
if args.wandb_run_name:
init_kwargs['wandb'] = {'name': args.wandb_run_name}
if args.log_tracker_config is not None:
init_kwargs = toml.load(args.log_tracker_config)
accelerator.init_trackers("textual_inversion" if args.log_tracker_name is None else args.log_tracker_name, init_kwargs=init_kwargs)
# function for saving/removing
def save_model(ckpt_name, embs, steps, epoch_no, force_sync_upload=False):
os.makedirs(args.output_dir, exist_ok=True)
ckpt_file = os.path.join(args.output_dir, ckpt_name)
print(f"\nsaving checkpoint: {ckpt_file}")
save_weights(ckpt_file, embs, save_dtype)
if args.huggingface_repo_id is not None:
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload)
def remove_model(old_ckpt_name):
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
if os.path.exists(old_ckpt_file):
print(f"removing old checkpoint: {old_ckpt_file}")
os.remove(old_ckpt_file)
# training loop
for epoch in range(num_train_epochs):
print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
text_encoder.train()
loss_total = 0
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
with accelerator.accumulate(text_encoder):
with torch.no_grad():
if "latents" in batch and batch["latents"] is not None:
latents = batch["latents"].to(accelerator.device)
else:
# latentに変換
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
# Get the text embedding for conditioning
input_ids = batch["input_ids"].to(accelerator.device)
# weight_dtype) use float instead of fp16/bf16 because text encoder is float
encoder_hidden_states = torch.stack(
[
train_util.get_hidden_states(args, s, tokenizer, text_encoder, weight_dtype)
for s in torch.split(input_ids, 1, dim=1)
]
)
# Sample noise, sample a random timestep for each image, and add noise to the latents,
# with noise offset and/or multires noise if specified
noise, noisy_latents, timesteps = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents)
# Predict the noise residual
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
if args.scale_v_pred_loss_like_noise_pred:
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
if args.debiased_estimation_loss:
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = text_encoder.get_input_embeddings().parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Let's make sure we don't update any embedding weights besides the newly added token
with torch.no_grad():
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = orig_embeds_params[
index_no_updates
]
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
# TODO: fix sample_images
# train_util.sample_images(
# accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
# )
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
updated_embs = (
accelerator.unwrap_model(text_encoder)
.get_input_embeddings()
.weight[token_ids_XTI]
.data.detach()
.clone()
)
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step)
save_model(ckpt_name, updated_embs, global_step, epoch)
if args.save_state:
train_util.save_and_remove_state_stepwise(args, accelerator, global_step)
remove_step_no = train_util.get_remove_step_no(args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no)
remove_model(remove_ckpt_name)
current_loss = loss.detach().item()
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
if (
args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower()
): # tracking d*lr value
logs["lr/d*lr"] = (
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
)
accelerator.log(logs, step=global_step)
loss_total += current_loss
avr_loss = loss_total / (step + 1)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_total / len(train_dataloader)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
updated_embs = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[token_ids_XTI].data.detach().clone()
if args.save_every_n_epochs is not None:
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs
if accelerator.is_main_process and saving:
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1)
save_model(ckpt_name, updated_embs, epoch + 1, global_step)
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1)
if remove_epoch_no is not None:
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no)
remove_model(remove_ckpt_name)
if args.save_state:
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1)
# TODO: fix sample_images
# train_util.sample_images(
# accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet, prompt_replacement
# )
# end of epoch
is_main_process = accelerator.is_main_process
if is_main_process:
text_encoder = accelerator.unwrap_model(text_encoder)
accelerator.end_training()
if args.save_state and is_main_process:
train_util.save_state_on_train_end(args, accelerator)
updated_embs = text_encoder.get_input_embeddings().weight[token_ids_XTI].data.detach().clone()
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as)
save_model(ckpt_name, updated_embs, global_step, num_train_epochs, force_sync_upload=True)
print("model saved.")
def save_weights(file, updated_embs, save_dtype):
updated_embs = updated_embs.reshape(16, -1, updated_embs.shape[-1])
updated_embs = updated_embs.chunk(16)
XTI_layers = [
"IN01",
"IN02",
"IN04",
"IN05",
"IN07",
"IN08",
"MID",
"OUT03",
"OUT04",
"OUT05",
"OUT06",
"OUT07",
"OUT08",
"OUT09",
"OUT10",
"OUT11",
]
state_dict = {}
for i, layer_name in enumerate(XTI_layers):
state_dict[layer_name] = updated_embs[i].squeeze(0).detach().clone().to("cpu").to(save_dtype)
# if save_dtype is not None:
# for key in list(state_dict.keys()):
# v = state_dict[key]
# v = v.detach().clone().to("cpu").to(save_dtype)
# state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(state_dict, file)
else:
torch.save(state_dict, file) # can be loaded in Web UI
def load_weights(file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
data = load_file(file)
else:
raise ValueError(f"NOT XTI: {file}")
if len(data.values()) != 16:
raise ValueError(f"NOT XTI: {file}")
emb = torch.concat([x for x in data.values()])
return emb
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, True, False)
train_util.add_training_arguments(parser, True)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser, False)
parser.add_argument(
"--save_model_as",
type=str,
default="pt",
choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)",
)
parser.add_argument("--weights", type=str, default=None, help="embedding weights to initialize / 学習するネットワークの初期重み")
parser.add_argument(
"--num_vectors_per_token", type=int, default=1, help="number of vectors per token / トークンに割り当てるembeddingsの要素数"
)
parser.add_argument(
"--token_string",
type=str,
default=None,
help="token string used in training, must not exist in tokenizer / 学習時に使用されるトークン文字列、tokenizerに存在しない文字であること",
)
parser.add_argument("--init_word", type=str, default=None, help="words to initialize vector / ベクトルを初期化に使用する単語、複数可")
parser.add_argument(
"--use_object_template",
action="store_true",
help="ignore caption and use default templates for object / キャプションは使わずデフォルトの物体用テンプレートで学習する",
)
parser.add_argument(
"--use_style_template",
action="store_true",
help="ignore caption and use default templates for stype / キャプションは使わずデフォルトのスタイル用テンプレートで学習する",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
train(args)