-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNetworkStatistics.py
236 lines (172 loc) · 7.5 KB
/
NetworkStatistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
####################################################################
# NetworkStatistics.py
# Purpose: script explores different characteristics of a newtork
# version 1.1.0
# date: 07.21.2017
####################################################################
# import module/script dependencies
import networkx as nx
import numpy as np
from collections import Counter
import matplotlib.pyplot as plt
from pylab import show
from powerlaw import plot_pdf, Fit, pdf
import powerlaw
# produce network statistics
# read in graphs
trem_owl = nx.read_gml('Network_Data/Trametinib_query_OWL_network.gml')
trem_nets = nx.read_gml('Network_Data/Trametinib_query_NETS_network.gml')
ddi_owl = nx.read_gml('Network_Data/DDI_reactome_query_OWL_network.gml')
ddi_nets=nx.read_gml('Network_Data/DDI_reactome_query_NETS_network.gml')
len(list(nx.non_edges(ddi_nets.to_undirected())))
count = set
for node in trem_nets.nodes(data=True):
nx.number_connected_components(ddi_owl.to_undirected())
## Descriptives
for i in [ddi_nets, ddi_owl]:
print 'Clustering Coefficient'
print nx.average_clustering(i.to_undirected())
print 'Number of Connected Components'
print nx.number_connected_components(i.to_undirected())
print 'Average Network Closeness (Centrality)'
print sum(nx.closeness_centrality(i.to_undirected()).values())/len(nx.closeness_centrality(i.to_undirected()).values())
print 'degree heterogeneity'
print float(np.mean(map(lambda x: x ** 2, i.to_undirected().degree().values()))) / (
(i.to_undirected().number_of_edges() * 2 /i.to_undirected().number_of_nodes()) ** 2)
print 'Average number of neighbors'
print sum(nx.average_neighbor_degree(i.to_undirected()).values())
print 'Nodes'
print nx.number_of_nodes(i.to_undirected())
print 'edges'
print nx.number_of_edges(i.to_undirected())
print 'Density'
print nx.density(trem_nets.to_undirected())
print 'Number of cliques'
print len(nx.number_of_cliques(i.to_undirected()))
print 'Average Degree'
print 2.0 * (len(i.to_undirected().edges())) / len(i.to_undirected().nodes())
print 'Average Degree Assortativity'
print nx.degree_assortativity_coefficient(i.to_undirected())
# things for only connected graphs
ddi = max(nx.connected_component_subgraphs(ddi_nets.to_undirected()), key=len)
print 'Network Diameter'
nx.diameter(ddi.to_undirected())
print 'Shorest paths (sum)'
sum(nx.all_pairs_shortest_path_length(ddi_owl.to_undirected()).values()[0].values())
print 'Average shortest_path (Characteristic path length)'
nx.average_shortest_path_length(ddi_owl.to_undirected())
ddi_owl_nodes = ddi_owl.nodes()
## CCDF with power-law fit
trem_owl_freq = Counter(nx.degree(trem_owl.to_undirected()).values()).values()
trem_nets_freq = Counter(nx.degree(trem_nets.to_undirected()).values()).values()
ddi_owl_freq = np.sort(Counter(list(nx.degree(ddi_owl.to_undirected()).values())).values())
ddi_nets_freq = np.sort(Counter(list(nx.degree(ddi_nets.to_undirected()).values())).values())
nx.degree(trem_owl.to_undirected()).values()
fit1 = powerlaw.Fit(nx.degree(trem_owl.to_undirected()).values(), discrete = True)
fit2 = powerlaw.Fit(nx.degree(trem_nets.to_undirected()).values(), discrete = True)
fit1 = powerlaw.Fit(nx.degree(ddi_owl.to_undirected()).values(), discrete = True)
fit2 = powerlaw.Fit(nx.degree(ddi_nets.to_undirected()).values(), discrete = True)
fig2 = fit1.plot_ccdf(color='mediumaquamarine', linewidth=2)
fit1.power_law.plot_ccdf(color='mediumaquamarine', linestyle='--', ax=fig2)
fit2.plot_ccdf(color='m', linewidth=2, ax=fig2)
fit2.power_law.plot_ccdf(color='m', linestyle='--', ax=fig2)
fig2.legend(['OWL CCDF',
'OWL CCDF Power-Law Fit',
'OWL-NETS CCDF',
'OWL-NETS CCDF Power-Law Fit'],loc='lower left', fontsize=14, numpoints=1)
#
# from mpl_toolkits.axes_grid.inset_locator import inset_axes
# fig2in = inset_axes(fig2, width="30%", height="30%", loc=3)
# fig2in.hist(nx.degree(ddi_owl).values(), bins = 5000, normed = True, color='deepskyblue')
# fig2in.set_xlim(0, 100)
#
# fig2in.hist(nx.degree(ddi_nets).values(), bins = 50, normed = True, color='red', alpha = 0.65)
# # fig2in.set_xlim(0, 0.1)
# fig2in.set_xticks([])
# fig2in.set_yticks([])
fig2.patch.set_facecolor('whitesmoke')
fig2.set_xlabel(r'Degree $k$', fontsize=16)
fig2.set_ylabel(r'$P(K \geq k)$', fontsize=16)
fig2.grid(True, color='black')
fig2.tick_params(axis='both', which='major', labelsize=14)
fig2.tick_params(axis='both', which='minor', labelsize=14)
# plt.ylim(0.01, 1.01)
# plt.xlim(0.98, 31622)
plt.tight_layout()
plt.savefig("Results/DDI_reactome/DDI_degreeDistribution.png", dpi=600) # save plot
# create degree distribution plots
plot_res = []
for r in [trem_owl, trem_nets, ddi_owl, ddi_nets]:
# #get counts of node occurrence in target list
degree = Counter(list(nx.degree(r.to_undirected()).values())).values() # for r = 1
# update indegree to include a value of zero for nodes not in target list
pdf = np.sort(degree)
cdf = np.arange(len(pdf)) / float(len(pdf))
ccdf = 1 - cdf
plot_res.append([pdf, ccdf])
# generate plot
plt1, = plt.loglog(plot_res[2][0], plot_res[2][1], '.', color='turquoise', markersize=12, alpha=0.75)
plt2, = plt.loglog(plot_res[0][0], plot_res[0][1], '.', color='turquoise', markersize=12, alpha=0.75)
plt3, = plt.loglog(plot_res[3][0], plot_res[3][1], '.', color='red', markersize=12, alpha=0.75)
plt4, = plt.loglog(plot_res[1][0], plot_res[1][1], '.', color='lime', markersize=12)
plt.legend([plt1, plt3], ['OWL Representation', 'OWL-NETS'],
loc='upper right', fontsize=12, numpoints=1)
plt.legend([plt2, plt4], ['OWL Representation', 'OWL-NETS'],
loc='upper right', fontsize=12, numpoints=1)
plt.xlabel(r'Degree $k$', fontsize=12)
plt.ylabel(r'$Pr(k)$', fontsize=12)
plt.grid(True, color='black')
plt.ylim(0.01, 1.01)
plt.xlim(0.98, 31622)
plt.tight_layout()
plt.savefig("Network_visualizations/Tram_degreeDistribution.png", dpi=600) # save plot
# save plot
## Betweenness
def most_important(G):
'''
returns a copy of G with the most important nodes according to the pagerank
'''
ranking = nx.betweenness_centrality(G).items()
print ranking
r = [x[1] for x in ranking]
m = sum(r) / len(r) # mean centrality
t = m * 3 #threshold
Gt = G.copy()
# threshold, we keep only the nodes with 3 times the mean
for k, v in ranking:
if v < t:
Gt.remove_node(k)
return Gt
G = graph.to_undirected()
G=owl.to_undirected()
Gt = most_important(G) # trimming
Gt.nodes(data = True)
# create the layout
pos = nx.spring_layout(G)
# draw the nodes and the edges (all)
nx.draw_networkx_nodes(G,pos,node_color='b',alpha=0.3,node_size=50)
nx.draw_networkx_edges(G,pos,alpha=0.1)
# draw the most important nodes with a different style
nx.draw_networkx_nodes(Gt,pos,node_color='r',alpha=0.4,node_size=200)
# also the labels this time
labels = nx.get_node_attributes(Gt, 'type')
nx.draw_networkx_labels(Gt,pos,labels,font_size=5,font_color='black')
plt.axis('off')
plt.tight_layout()
plt.savefig("Network_visualizations/Trem_betweeness_importance_NETS.png", dpi=1000)
res = []
count1 = 0
count2 = 0
count3 = 0
count4 = 0
for i in ddi.to_undirected().edges(data =True):
if i[2]['nice'] == ['drug1_ice', 'target_ice']:
count1 += 1
if i[2]['nice'] == ['pathway_target_ice', 'drug2_ice']:
count2 += 1
if i[2]['nice'] == ['target_ice', 'pathway_ice']:
count3 += 1
if i[2]['nice'] == ['pathway_ice', 'pathway_target_ice']:
count4 += 1
if __name__ == '__main__':
main()